Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 623-627
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
bounds for derivatives, best approximations by polynomials
Mots-clés : Sobolev spaces.
Mots-clés : Sobolev spaces.
@article{MZM_2023_114_4_a10,
author = {T. A. Garmanova and I. A. Sheipak},
title = {Relationship {Between} the {Best~}$L_p$ {Approximations} of {Splines} by {Polynomials} with {Estimates} of the {Values} of {Intermediate} {Derivatives} in {Sobolev} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {623--627},
year = {2023},
volume = {114},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/}
}
TY - JOUR AU - T. A. Garmanova AU - I. A. Sheipak TI - Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces JO - Matematičeskie zametki PY - 2023 SP - 623 EP - 627 VL - 114 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/ LA - ru ID - MZM_2023_114_4_a10 ER -
%0 Journal Article %A T. A. Garmanova %A I. A. Sheipak %T Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces %J Matematičeskie zametki %D 2023 %P 623-627 %V 114 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/ %G ru %F MZM_2023_114_4_a10
T. A. Garmanova; I. A. Sheipak. Relationship Between the Best $L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 623-627. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/
[1] G. A. Kalyabin, Teoriya funktsii i differentsialnye uravneniya, Trudy MIAN, 269, Nauka, M., 2010, 143–149 | MR | Zbl
[2] T. A. Garmanova, Matem. zametki, 109:4 (2021), 500–507 | DOI | MR
[3] A. Pinkus, On $L^1$-Approximation, Cambridge Tracts in Math., 93, Cambridge Univ. Press, Cambridge, 1989 | MR
[4] H. Attouch, R. Cominetti, Nonlinear Anal., 36:3 (1999), 373–399 | DOI | MR
[5] T. A. Garmanova, I. A. Sheipak, Tr. MMO, 80, MTsNMO, M., 2019, 221–246 | MR