Relationship Between the Best~$L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 623-627.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: bounds for derivatives, best approximations by polynomials
Mots-clés : Sobolev spaces.
@article{MZM_2023_114_4_a10,
     author = {T. A. Garmanova and I. A. Sheipak},
     title = {Relationship {Between} the {Best~}$L_p$ {Approximations} of {Splines} by {Polynomials} with {Estimates} of the {Values} of {Intermediate} {Derivatives} in {Sobolev} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {623--627},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/}
}
TY  - JOUR
AU  - T. A. Garmanova
AU  - I. A. Sheipak
TI  - Relationship Between the Best~$L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 623
EP  - 627
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/
LA  - ru
ID  - MZM_2023_114_4_a10
ER  - 
%0 Journal Article
%A T. A. Garmanova
%A I. A. Sheipak
%T Relationship Between the Best~$L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces
%J Matematičeskie zametki
%D 2023
%P 623-627
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/
%G ru
%F MZM_2023_114_4_a10
T. A. Garmanova; I. A. Sheipak. Relationship Between the Best~$L_p$ Approximations of Splines by Polynomials with Estimates of the Values of Intermediate Derivatives in Sobolev Spaces. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 623-627. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a10/

[1] G. A. Kalyabin, Teoriya funktsii i differentsialnye uravneniya, Trudy MIAN, 269, Nauka, M., 2010, 143–149 | MR | Zbl

[2] T. A. Garmanova, Matem. zametki, 109:4 (2021), 500–507 | DOI | MR

[3] A. Pinkus, On $L^1$-Approximation, Cambridge Tracts in Math., 93, Cambridge Univ. Press, Cambridge, 1989 | MR

[4] H. Attouch, R. Cominetti, Nonlinear Anal., 36:3 (1999), 373–399 | DOI | MR

[5] T. A. Garmanova, I. A. Sheipak, Tr. MMO, 80, MTsNMO, M., 2019, 221–246 | MR