Dugundji Compacta and the Space of Idempotent Probability Measures
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 497-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given group $(G,X,\alpha)$ of topological transformations on a Tikhonov space $X$, a group $(I(G, X), I(X), I(\alpha))$ of topological transformations on the space $I(X)$ of idempotent probability measures is constructed. It is shown that, if the action $\alpha$ of the group $G$ is open, then the action $I(\alpha)$ of the group $I(G,X)$ is also open; while an example is given showing that the openness of the action $\alpha$ is substantial. It has been established that, if the diagonal product $\Delta f_{p}$ of a given family $\{f_{p}, f_{pq}; A\}$ of continuous mappings is an embedding, then the diagonal product $\Delta I(f_{p})$ of the family $\{I(f_{p}), I(f_{pq}); A\}$ of continuous mappings is also an embedding. A Dugundji compactness criterion for the space of idempotent probability measures is obtained.
Keywords: idempotent measure, topological transformation group.
Mots-clés : Dugundji compactum
@article{MZM_2023_114_4_a1,
     author = {A. A. Zaitov and D. T. Eshkobilova},
     title = {Dugundji {Compacta} and the {Space} of {Idempotent} {Probability} {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {497--508},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a1/}
}
TY  - JOUR
AU  - A. A. Zaitov
AU  - D. T. Eshkobilova
TI  - Dugundji Compacta and the Space of Idempotent Probability Measures
JO  - Matematičeskie zametki
PY  - 2023
SP  - 497
EP  - 508
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a1/
LA  - ru
ID  - MZM_2023_114_4_a1
ER  - 
%0 Journal Article
%A A. A. Zaitov
%A D. T. Eshkobilova
%T Dugundji Compacta and the Space of Idempotent Probability Measures
%J Matematičeskie zametki
%D 2023
%P 497-508
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a1/
%G ru
%F MZM_2023_114_4_a1
A. A. Zaitov; D. T. Eshkobilova. Dugundji Compacta and the Space of Idempotent Probability Measures. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 497-508. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a1/

[1] U. I. Syan, Kogomologicheskaya teoriya topologicheskikh grupp preobrazovanii, Mir, M., 1979 | MR

[2] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR

[3] A. Pelchinskii, Lineinye prodolzheniya, lineinye usredneniya i ikh primeneniya k lineinoi topologicheskoi klassifikatsii prostranstv nepreryvnykh funktsii, Mir, M., 1970 | MR

[4] R. Haydon, “On a problem of Pelczynski: Milutin spaces, Dugundji spaces and $AE$(0-dim)”, Studia Math., 52:1 (1974), 23–31 | DOI | MR

[5] E. V. Schepin, “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (219) (1981), 3–62 | MR | Zbl

[6] V. V. Uspenskii, “Topologicheskie gruppy i kompakty Dugundzhi”, Matem. sb., 180:8 (1989), 1092–1118 | MR | Zbl

[7] K. L. Kozlov, V. A. Chatyrko, “Topologicheskie gruppy preobrazovanii i bikompakty Dugundzhi”, Matem. sb., 201:1 (2010), 103–128 | DOI | MR | Zbl

[8] V. A. Chatyrko, K. L. Kozlov, “The maximal $G$-compactifications of $G$-spaces with special actions”, Proc. 9-th Prague Topological Symposium, Topol. Atlas, North Bay, ON, 2002, 15–21 | MR

[9] V. N. Kolokoltsov, “Idempotentnye struktury v optimizatsii”, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 1998), v. 4, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 65, Optimalnoe upravlenie, VINITI, M., 1999, 118–174 | MR | Zbl

[10] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya. I”, Funkts. analiz i ego pril., 23:1 (1989), 1–14 | MR | Zbl

[11] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya i optimalnogo sinteza. 2”, Funkts. analiz i ego pril., 23:4 (1989), 53–62 | MR | Zbl

[12] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Matem. zametki, 69:5 (2001), 758–797 | DOI | MR | Zbl

[13] A. A. Zaitov, A. Ya. Ishmetov, “Gomotopicheskie svoistva prostranstva $I_f(X)$ idempotentnykh veroyatnostnykh mer”, Matem. zametki, 106:4 (2019), 531–542 | DOI | MR

[14] Kh. F. Kholturaev, “O $Z$-mnozhestvakh prostranstva idempotentnykh veroyatnostnykh mer”, Matem. zametki, 111:6 (2022), 904–920 | DOI | MR

[15] A. A. Zaitov, “Geometricheskie i topologicheskie svoistva podprostranstva $P_f(X)$ veroyatnostnykh mer”, Izv. vuzov. Matem., 2019, no. 10, 28–37 | DOI

[16] A. A. Zaitov, A. Ya. Ishmetov, “Gomotopicheskie svoistva prostranstva $I_f(X)$ idempotentnykh veroyatnostnykh mer”, Matem. zametki, 106:4 (2019), 531–542 | DOI | MR

[17] D. T. Eshkobilova, “Gruppy topologicheskikh preobrazovanii prostranstva idempotentnykh veroyatnostnykh mer”, Byulleten Instituta matem., 2022 (to appear)

[18] A. Ya. Ishmetov, O funktore idempotentnykh veroyatnostnykh mer na kategoriyakh topologicheskikh prostranstv, Mahalla va oila, Tashkent, 2022