On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 483-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be a set of primes. A subgroup $H$ of a group $G$ is said to be $\mathbb{P}_{\pi}$-subnormal in $G$ if either $H=G$ or there exists a chain of subgroups beginning with $H$ and ending with $G$ such that the index of each subgroup in the chain is either a prime in $\pi$ or a $\pi'$-number. Properties of $\mathbb{P}_{\pi}$-subnormal subgroups are studied. In particular, it is proved that the class of all $\pi$-closed groups in which all Sylow subgroups are $\mathbb{P}_{\pi}$-subnormal is a hereditary saturated formation. Criteria for the $\pi$-supersolvability of a $\pi$-closed group with given systems of $\mathbb{P}_{\pi}$-subnormal subgroups are obtained.
Keywords: $\mathbb{P}_{\pi}$-subnormal subgroup, Sylow subgroup, hereditary saturated formation.
Mots-clés : ${\pi}$-solvable group, ${\pi}$-supersolvable group
@article{MZM_2023_114_4_a0,
     author = {T. I. Vasilyeva and A. G. Koranchuk},
     title = {On {Finite} {Groups} with~$\mathbb{P}_{\pi}${-Subnormal} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--496},
     publisher = {mathdoc},
     volume = {114},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
AU  - A. G. Koranchuk
TI  - On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 483
EP  - 496
VL  - 114
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/
LA  - ru
ID  - MZM_2023_114_4_a0
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%A A. G. Koranchuk
%T On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups
%J Matematičeskie zametki
%D 2023
%P 483-496
%V 114
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/
%G ru
%F MZM_2023_114_4_a0
T. I. Vasilyeva; A. G. Koranchuk. On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 483-496. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/

[1] L. S. Kazarin, “O gruppakh s faktorizatsiei”, Dokl. AN SSSR, 256:1 (1981), 26–29 | MR | Zbl

[2] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. matem. zhurn., 51:6 (2010), 1270–1281 | MR

[3] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O proizvedeniyakh $\mathbb P$-subnormalnykh podgrupp v konechnykh gruppakh”, Sib. matem. zhurn., 53:1 (2012), 59–67 | MR

[4] V. N. Kniahina, V. S. Monakhov, “On supersolvability of finite groups with $\mathbb{P}$-subnormal subgroups”, Internal. J. of Group Theory, 2:4 (2013), 21–29 | MR

[5] V. I. Murashko, “Klassy konechnykh grupp s obobschenno subnormalnymi tsiklicheskimi primarnymi podgruppami”, Sib. matem. zhurn., 55:6 (2014), 1353–1367 | MR

[6] V. A. Vasilev, “Konechnye gruppy s submodulyarnymi silovskimi podgruppami”, Sib. matem. zhurn., 56:6 (2015), 1277–1288 | DOI | MR

[7] A. Ballester-Bolinches, Y. Li, M. C. Pedraza-Aguilera, N. Su, “On factorised finite groups”, Mediterr. J. Math., 17:2 (2020), 65 | DOI | MR

[8] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin, 1967 | MR

[9] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR

[10] M. Bianchi, A. Gillio Berta Mauri, P. Hauck, “On finite groups with nilpotent Sylow-normalizers”, Arch. Math. (Basel), 47:3 (1986), 193–197 | DOI | MR

[11] T. I. Vasileva, A. G. Koranchuk, “Konechnye gruppy s subnormalnymi koradikalami silovskikh normalizatorov”, Sib. matem. zhurn., 63:4 (2022), 805–813 | DOI

[12] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[13] A. F. Vasilev, “Novye svoistva konechnykh dinilpotentnykh grupp”, Izv. NAN Belarus. Ser. fiz.-mat. nauk, 2 (2004), 39–43