On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups
Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 483-496
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\pi$ be a set of primes. A subgroup $H$ of a group $G$ is said to be $\mathbb{P}_{\pi}$-subnormal in $G$ if either $H=G$ or there exists a chain of subgroups beginning with $H$ and ending with $G$ such that the index of each subgroup in the chain is either a prime in $\pi$ or a $\pi'$-number. Properties of $\mathbb{P}_{\pi}$-subnormal subgroups are studied. In particular, it is proved that the class of all $\pi$-closed groups in which all Sylow subgroups are $\mathbb{P}_{\pi}$-subnormal is a hereditary saturated formation. Criteria for the $\pi$-supersolvability of a $\pi$-closed group with given systems of $\mathbb{P}_{\pi}$-subnormal subgroups are obtained.
Keywords:
$\mathbb{P}_{\pi}$-subnormal subgroup, Sylow subgroup, hereditary saturated formation.
Mots-clés : ${\pi}$-solvable group, ${\pi}$-supersolvable group
Mots-clés : ${\pi}$-solvable group, ${\pi}$-supersolvable group
@article{MZM_2023_114_4_a0,
author = {T. I. Vasilyeva and A. G. Koranchuk},
title = {On {Finite} {Groups} with~$\mathbb{P}_{\pi}${-Subnormal} {Subgroups}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--496},
publisher = {mathdoc},
volume = {114},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/}
}
T. I. Vasilyeva; A. G. Koranchuk. On Finite Groups with~$\mathbb{P}_{\pi}$-Subnormal Subgroups. Matematičeskie zametki, Tome 114 (2023) no. 4, pp. 483-496. http://geodesic.mathdoc.fr/item/MZM_2023_114_4_a0/