Uniform Convergence of Sine Series with Fractional-Monotone Coefficients
Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 339-346

Voir la notice de l'article provenant de la source Math-Net.Ru

We study how the well-known criterion for the uniform convergence of a sine series with monotone coefficients changes if, instead of monotonicity, one imposes the condition of $\alpha$-monotonicity with $0\alpha 1$. Moreover, we obtain an addition to the well-known Kolmogorov theorem on the integrability of the sum of a cosine series with convex coefficients tending to zero.
Keywords: trigonometric series, Cesaro numbers.
Mots-clés : uniform convergence
@article{MZM_2023_114_3_a1,
     author = {M. I. Dyachenko},
     title = {Uniform {Convergence} of {Sine} {Series} with {Fractional-Monotone} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--346},
     publisher = {mathdoc},
     volume = {114},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Uniform Convergence of Sine Series with Fractional-Monotone Coefficients
JO  - Matematičeskie zametki
PY  - 2023
SP  - 339
EP  - 346
VL  - 114
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a1/
LA  - ru
ID  - MZM_2023_114_3_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Uniform Convergence of Sine Series with Fractional-Monotone Coefficients
%J Matematičeskie zametki
%D 2023
%P 339-346
%V 114
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a1/
%G ru
%F MZM_2023_114_3_a1
M. I. Dyachenko. Uniform Convergence of Sine Series with Fractional-Monotone Coefficients. Matematičeskie zametki, Tome 114 (2023) no. 3, pp. 339-346. http://geodesic.mathdoc.fr/item/MZM_2023_114_3_a1/