Symmetrization and Integral Inequalities
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 282-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

Steiner symmetrizations of anisotropic integral functionals of multivariate calculus of variations defined on the set of compactly supported functions in the Sobolev class are studied. Applications of the results to embedding theorems for anisotropic Orlicz–Sobolev spaces are outlined, and lower bounds for the values of multidimensional variational problems are found.
Keywords: symmetrization, function, space, inequality, integral
Mots-clés : gradient.
@article{MZM_2023_114_2_a9,
     author = {V. S. Klimov},
     title = {Symmetrization and {Integral} {Inequalities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {282--296},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a9/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Symmetrization and Integral Inequalities
JO  - Matematičeskie zametki
PY  - 2023
SP  - 282
EP  - 296
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a9/
LA  - ru
ID  - MZM_2023_114_2_a9
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Symmetrization and Integral Inequalities
%J Matematičeskie zametki
%D 2023
%P 282-296
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a9/
%G ru
%F MZM_2023_114_2_a9
V. S. Klimov. Symmetrization and Integral Inequalities. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 282-296. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a9/

[1] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962 | MR

[2] J. Sarvas, “Symmetrization of condensers in $n$-space”, Ann. Acad. Sci. Fenn. Ser. A. I., 1:522 (1972), 44 | MR

[3] A. Yu. Solynin, “Continuous symmetrization via polarization”, Algebra i Analiz, 24:1 (2012), 157–222 | MR | Zbl

[4] V. S. Klimov, “Teoremy vlozheniya i geometricheskie neravenstva”, Izv. AN SSSR. Ser. matem., 40:3 (1976), 645–671 | MR | Zbl

[5] V. S. Klimov, “O simmetrizatsii anizotropnykh integralnykh funktsionalov”, Izv. vuzov. Matem., 1999, no. 8, 26–32 | MR | Zbl

[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[7] G. Khadviger, Lektsii ob ob'eme, ploschadi poverkhnosti i izoperimetrii, IL, M., 1966 | MR

[8] K. Kuratovskii, Topologiya, v. 1, Mir, M., 1966 | MR

[9] P. Gruber, Convex and Discrete Geometry, Springer-Verlag, Berlin, 2007 | MR

[10] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973 | MR

[11] R. Rockafellar, R. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998 | MR

[12] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR

[13] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR

[14] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[15] V. S. Klimov, “Izoperimetricheskie i funktsionalnye neravenstva”, Model. i analiz inform. sistem, 25:3 (2018), 331–342 | DOI | MR

[16] V. S. Klimov, “Ob otsenkakh snizu nekotorykh integralnykh funktsionalov”, Kachestvennye i priblizhennye metody issledovaniya operatornykh uravnenii, Yarosl. gos. ut-t, Yaroslavl, 1981, 77–87 | MR