Criterion for the Existence of Two-Point Oscillatory Solution of a Perturbed System with a Relay
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 260-273.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an $n$-dimensional system of ordinary differential equations with a constant matrix in the linear part, a discontinuous hysteresis-type nonlinearity, and a continuous bounded perturbation function in the nonlinear part. The nonlinearity is described by a characteristic of the on-off nonideal relay. The matrix of the system has real simple nonzero eigenvalues. We study oscillatory solutions with two switching points in the phase space of the system and an arbitrary period of return to each of these points. We consider the system in the original and canonical forms. The Cauchy problem is solved with initial and boundary conditions at the switching points. For the canonical system with nonzero vector feedback, the vector of units in the case of nonlinearity, and a perturbation function of general form, we prove a criterion for the existence and uniqueness of a solution with an arbitrary return period. Moreover, in the case of a periodic perturbation function, a necessary and sufficient condition for the existence of a unique periodic solution with a given period is obtained. We present an example of the existence of a solution for a three-dimensional system.
Keywords: relay system with hysteresis, system of ordinary differential equations, discontinuous hysteresis nonlinearity, continuous bounded perturbation function, bounded oscillatory solution, periodic solution, switching points, switching hyperplanes.
@article{MZM_2023_114_2_a7,
     author = {V. V. Yevstafyeva},
     title = {Criterion for the {Existence} of {Two-Point} {Oscillatory} {Solution} of a {Perturbed} {System} with a {Relay}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {260--273},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a7/}
}
TY  - JOUR
AU  - V. V. Yevstafyeva
TI  - Criterion for the Existence of Two-Point Oscillatory Solution of a Perturbed System with a Relay
JO  - Matematičeskie zametki
PY  - 2023
SP  - 260
EP  - 273
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a7/
LA  - ru
ID  - MZM_2023_114_2_a7
ER  - 
%0 Journal Article
%A V. V. Yevstafyeva
%T Criterion for the Existence of Two-Point Oscillatory Solution of a Perturbed System with a Relay
%J Matematičeskie zametki
%D 2023
%P 260-273
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a7/
%G ru
%F MZM_2023_114_2_a7
V. V. Yevstafyeva. Criterion for the Existence of Two-Point Oscillatory Solution of a Perturbed System with a Relay. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 260-273. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a7/

[1] Ya. Z. Tsypkin, Releinye avtomaticheskie sistemy, Nauka, M., 1974

[2] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR

[3] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132:1 (2014), 635–647 | DOI | MR

[4] G. A. Leonov, M. M. Shumafov, V. A. Teshev, K. D. Aleksandrov, “Differential equations with hysteresis operators. Existence of solutions, stability, and oscillations”, Differ. Equ., 53:13 (2017), 1764–1816 | DOI | MR

[5] V. I. Utkin, Yu. V. Orlov, “Sistemy upravleniya s vektornymi rele”, Avtomat. i telemekh., 2019, no. 9, 143–155 | DOI

[6] L. Fang, J. Wang, Q. Zhang, “Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model”, Nonlinear Dynam., 79:2 (2015), 1257–1273 | DOI | MR

[7] D. Rachinskii, “Realization of arbitrary hysteresis by a low-dimensional gradient flow”, Discrete Contin. Dyn. Syst. Ser. B, 21:1 (2016), 227–243 | DOI | MR

[8] A. S. Fursov, T. S. Todorov, P. A. Krylov, R. P. Mitrev, “O suschestvovanii kolebatelnykh rezhimov v odnoi nelineinoi sisteme s gisterezisami”, Differents. uravneniya, 56:8 (2020), 1103–1121 | DOI | MR

[9] A. S. Fursov, R. P. Mitrev, P. A. Krylov, T. S. Todorov, “O suschestvovanii periodicheskogo rezhima v odnoi nelineinoi sisteme”, Differents. uravneniya, 57:8 (2021), 1104–1115 | DOI | MR

[10] V. V. Evstafeva, “Ob usloviyakh suschestvovaniya dvukhtochechno-kolebatelnogo periodicheskogo resheniya v neavtonomnoi releinoi sisteme s gurvitsevoi matritsei”, Avtomat. i telemekh., 2015, no. 6, 42–56

[11] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence”, Internat. J. Robust Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR

[12] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | MR

[13] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence”, Electron. J. Differential Equations, 2017, no. 140, 1–10 | MR

[14] V. V. Evstafeva, “Periodicheskie resheniya sistemy differentsialnykh uravnenii s gisterezisnoi nelineinostyu pri nalichii nulevogo sobstvennogo chisla”, Ukr. matem. zhurn., 70:8 (2018), 1085–1096 | MR

[15] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic modes in automatic control system with a three-position relay”, Internat. J. Control, 93:4 (2020), 763–770 | DOI | MR

[16] V. V. Evstafeva, “Suschestvovanie $T/k$-periodicheskikh reshenii nelineinoi neavtonomnoi sistemy s kratnym sobstvennym chislom matritsy”, Matem. zametki, 109:4 (2021), 529–543 | DOI

[17] V. V. Evstafeva, “O suschestvovanii dvukhtochechno-kolebatelnykh reshenii vozmuschennoi releinoi sistemy s gisterezisom”, Differents. uravneniya, 57:2 (2021), 169–178 | DOI | MR

[18] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Continuous dependence on parameters and boundedness of solutions to a hysteresis system”, Appl. Math., 67:1 (2022), 65–80 | DOI | MR

[19] V. V. Yevstafyeva, “Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix”, Ukrainian Math. J., 73:5 (2021), 746–757 | MR

[20] A. I. Lure, “O kanonicheskoi forme uravnenii teorii avtomaticheskogo regulirovaniya”, Prikl. matem. i mekh., 12:5 (1948), 651–666 | MR