Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 229-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

All nonhyperbolic automorphisms of the 2-torus are not structurally stable, and it is generally impossible to predict the dynamics of their arbitrarily small perturbations. In this paper, given a representative of each algebraic conjugacy class of nonperiodic nonhyperbolic maps, a one-parameter family of diffeomorphisms is constructed, in which the zero value of the parameter corresponds to the given map and the nonzero values, to Morse–Smale diffeomorphisms. According to results of V. Z. Grines and A. N. Bezdenezhnykh, a Morse–Smale diffeomorphism of a closed orientable surface which induces a nonperiodic action on the fundamental group has nonempty heteroclinic set. It is proved that, in all of the constructed families, the diffeomorphisms corresponding to nonzero parameter values have nonempty orientable heteroclinic sets in which the number of orbits is determined by the automorphism being perturbed.
Mots-clés : nonhyperbolic automorphism, $2$-torus
Keywords: orientable heteroclinic set.
@article{MZM_2023_114_2_a5,
     author = {V. Z. Grines and D. I. Mints and E. E. Chilina},
     title = {Perturbations of {Nonhyperbolic} {Algebraic} {Automorphisms} of the {2-Torus}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {229--243},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a5/}
}
TY  - JOUR
AU  - V. Z. Grines
AU  - D. I. Mints
AU  - E. E. Chilina
TI  - Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus
JO  - Matematičeskie zametki
PY  - 2023
SP  - 229
EP  - 243
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a5/
LA  - ru
ID  - MZM_2023_114_2_a5
ER  - 
%0 Journal Article
%A V. Z. Grines
%A D. I. Mints
%A E. E. Chilina
%T Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus
%J Matematičeskie zametki
%D 2023
%P 229-243
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a5/
%G ru
%F MZM_2023_114_2_a5
V. Z. Grines; D. I. Mints; E. E. Chilina. Perturbations of Nonhyperbolic Algebraic Automorphisms of the 2-Torus. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 229-243. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a5/

[1] A. N. Bezdenezhykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Selecta Math. Soviet., 11:1 (1992) | MR

[2] A. I. Morozov, “Realizatsiya gomotopicheskikh klassov gomeomorfizmov tora prosteishimi strukturno ustoichivymi diffeomorfizmami”, Zhurnal SVMO, 23:2 (2021), 171–184 | DOI

[3] A. N. Bezdenezhnykh, V. Z. Grines, “Diffeomorfizmy s orientiruemymi geteroklinicheskimi mnozhestvami na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differentsialnykh uravnenii: Mezhvuz. temat. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1985, 139–152

[4] S. Kh. Aranson, V. Z. Grines, “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:1(271) (1990), 3–32 | MR | Zbl

[5] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR

[6] S. Batterson, “The dynamics of Morse–Smale diffeomorphisms on the torus”, Trans. Amer. Math. Soc., 256 (1979), 395–403 | DOI | MR

[7] S. V. Sidorov, E. E. Chilina, “O negiperbolicheskikh algebraicheskikh avtomorfizmakh dvumernogo tora”, Zhurnal SVMO, 23:3 (2021), 295–307 | DOI | MR

[8] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl

[9] V. Z. Grines, T. V. Medvedev, O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, Developments in Math., 46, Springer, Cham, 2016 | MR

[10] V. Chigarev, A. Kazakov, A. Pikovsky, “Kantorovich–Rubinstein–Wasserstein distance between overlapping attractor and repeller”, Chaos, 30:7 (2020), 073114 | DOI | MR