On Some Classes of Bases in Finite-Dimensional Lie Algebras
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 203-211
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, Lie algebras having bases of a special form (nice and beautiful bases) are considered. For nice bases, it is proved that, in a chosen nilpotent Lie algebra, their number (up to equivalence) is finite. For some Lie algebras of low dimension, it is shown that, when passing from a complex Lie algebra to its realification, the property to have a beautiful basis is lost.
Keywords:
Lie algebra, nice basis
Mots-clés : equivalent bases.
Mots-clés : equivalent bases.
@article{MZM_2023_114_2_a3,
author = {V. V. Gorbatsevich},
title = {On {Some} {Classes} of {Bases} in {Finite-Dimensional} {Lie} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {203--211},
publisher = {mathdoc},
volume = {114},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a3/}
}
V. V. Gorbatsevich. On Some Classes of Bases in Finite-Dimensional Lie Algebras. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 203-211. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a3/