On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 297-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differentiation-invariant weighted Fréchet space ${\mathcal E}(\varphi)$ of infinitely differentiable functions in ${\mathbb R}^n$ generated by a countable family $\varphi$ of continuous real-valued functions in ${\mathbb R}^n$ is considered. It is shown that, under minimal restrictions on $\varphi$, any continuous linear operator on ${\mathcal E}(\varphi)$ that is not a scalar multiple of the identity mapping and commutes with the partial differentiation operators is hypercyclic. Examples of hypercyclic operators in ${\mathcal E}(\varphi)$ are presented for cases in which the space ${\mathcal E}(\varphi)$ is translation invariant.
Keywords: infinitely differentiable functions, hypercyclic operator, convolution operator.
@article{MZM_2023_114_2_a10,
     author = {A. I. Rakhimova},
     title = {On {Hypercyclic} {Operators} in {Weighted} {Spaces} of {Infinitely} {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/}
}
TY  - JOUR
AU  - A. I. Rakhimova
TI  - On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 297
EP  - 305
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/
LA  - ru
ID  - MZM_2023_114_2_a10
ER  - 
%0 Journal Article
%A A. I. Rakhimova
%T On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
%J Matematičeskie zametki
%D 2023
%P 297-305
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/
%G ru
%F MZM_2023_114_2_a10
A. I. Rakhimova. On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/

[1] C. Kitai, Invariant Closed Sets for Linear Operators, University of Toronto, Toronto, ON, Canada, 1982 | MR

[2] K. G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc., 36:3 (1999), 345–381 | DOI | MR

[3] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR

[4] R. M. Gethner, J. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR

[5] I. Kh. Musin, “O gipertsiklichnosti nekotorykh differentsialnykh operatorov v vesovykh prostranstvakh beskonechno differentsiruemykh funktsii v $\mathbb{R}^n$”, Trudy mezhdunarodnoi konferentsii “Krymskaya osennyaya matematicheskaya shkola-simpozium”, Izdatelstvo Diaipi, Simferopol, 2010, 21–27

[6] I. Kh. Musin, “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Matem. sb., 195:10 (2004), 83–108 | DOI | MR | Zbl

[7] I. Kh. Musin, S. V. Popenov, “O vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Ufimsk. matem. zhurn., 2:3 (2010), 54–62 | Zbl

[8] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR