Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_2_a10, author = {A. I. Rakhimova}, title = {On {Hypercyclic} {Operators} in {Weighted} {Spaces} of {Infinitely} {Differentiable} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {297--305}, publisher = {mathdoc}, volume = {114}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/} }
A. I. Rakhimova. On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/
[1] C. Kitai, Invariant Closed Sets for Linear Operators, University of Toronto, Toronto, ON, Canada, 1982 | MR
[2] K. G. Grosse-Erdmann, “Universal families and hypercyclic operators”, Bull. Amer. Math. Soc., 36:3 (1999), 345–381 | DOI | MR
[3] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR
[4] R. M. Gethner, J. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR
[5] I. Kh. Musin, “O gipertsiklichnosti nekotorykh differentsialnykh operatorov v vesovykh prostranstvakh beskonechno differentsiruemykh funktsii v $\mathbb{R}^n$”, Trudy mezhdunarodnoi konferentsii “Krymskaya osennyaya matematicheskaya shkola-simpozium”, Izdatelstvo Diaipi, Simferopol, 2010, 21–27
[6] I. Kh. Musin, “O preobrazovanii Fure–Laplasa funktsionalov na vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Matem. sb., 195:10 (2004), 83–108 | DOI | MR | Zbl
[7] I. Kh. Musin, S. V. Popenov, “O vesovom prostranstve beskonechno differentsiruemykh funktsii v $\mathbb R^n$”, Ufimsk. matem. zhurn., 2:3 (2010), 54–62 | Zbl
[8] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR