On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 297-305

Voir la notice de l'article provenant de la source Math-Net.Ru

A differentiation-invariant weighted Fréchet space ${\mathcal E}(\varphi)$ of infinitely differentiable functions in ${\mathbb R}^n$ generated by a countable family $\varphi$ of continuous real-valued functions in ${\mathbb R}^n$ is considered. It is shown that, under minimal restrictions on $\varphi$, any continuous linear operator on ${\mathcal E}(\varphi)$ that is not a scalar multiple of the identity mapping and commutes with the partial differentiation operators is hypercyclic. Examples of hypercyclic operators in ${\mathcal E}(\varphi)$ are presented for cases in which the space ${\mathcal E}(\varphi)$ is translation invariant.
Keywords: infinitely differentiable functions, hypercyclic operator, convolution operator.
@article{MZM_2023_114_2_a10,
     author = {A. I. Rakhimova},
     title = {On {Hypercyclic} {Operators} in {Weighted} {Spaces} of {Infinitely} {Differentiable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/}
}
TY  - JOUR
AU  - A. I. Rakhimova
TI  - On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 297
EP  - 305
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/
LA  - ru
ID  - MZM_2023_114_2_a10
ER  - 
%0 Journal Article
%A A. I. Rakhimova
%T On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions
%J Matematičeskie zametki
%D 2023
%P 297-305
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/
%G ru
%F MZM_2023_114_2_a10
A. I. Rakhimova. On Hypercyclic Operators in Weighted Spaces of Infinitely Differentiable Functions. Matematičeskie zametki, Tome 114 (2023) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/MZM_2023_114_2_a10/