On Some Quotients of Hyperbolic Groups
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 121-132

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents generalizations of results given in the book Geometry of Defining Relations in Groups by A. Yu. Ol'shanskii to the case of noncyclic torsion-free hyperbolic groups. In particular, it is proved that every noncyclic torsion-free hyperbolic group has a non-Abelian torsion-free quotient in which all proper subgroups are cyclic and the intersection of any two of them is nontrivial.
Keywords: torsion-free hyperbolic group
Mots-clés : quotient group.
@article{MZM_2023_114_1_a9,
     author = {O. V. Kulikova},
     title = {On {Some} {Quotients} of {Hyperbolic} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--132},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On Some Quotients of Hyperbolic Groups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 121
EP  - 132
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/
LA  - ru
ID  - MZM_2023_114_1_a9
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On Some Quotients of Hyperbolic Groups
%J Matematičeskie zametki
%D 2023
%P 121-132
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/
%G ru
%F MZM_2023_114_1_a9
O. V. Kulikova. On Some Quotients of Hyperbolic Groups. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/