On Some Quotients of Hyperbolic Groups
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 121-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper presents generalizations of results given in the book Geometry of Defining Relations in Groups by A. Yu. Ol'shanskii to the case of noncyclic torsion-free hyperbolic groups. In particular, it is proved that every noncyclic torsion-free hyperbolic group has a non-Abelian torsion-free quotient in which all proper subgroups are cyclic and the intersection of any two of them is nontrivial.
Keywords: torsion-free hyperbolic group
Mots-clés : quotient group.
@article{MZM_2023_114_1_a9,
     author = {O. V. Kulikova},
     title = {On {Some} {Quotients} of {Hyperbolic} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {121--132},
     year = {2023},
     volume = {114},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On Some Quotients of Hyperbolic Groups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 121
EP  - 132
VL  - 114
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/
LA  - ru
ID  - MZM_2023_114_1_a9
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On Some Quotients of Hyperbolic Groups
%J Matematičeskie zametki
%D 2023
%P 121-132
%V 114
%N 1
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/
%G ru
%F MZM_2023_114_1_a9
O. V. Kulikova. On Some Quotients of Hyperbolic Groups. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a9/

[1] A. Yu. Olshanskii, “Periodicheskie faktor-gruppy giperbolicheskikh grupp”, Matem. sb., 182:4 (1991), 543–567 | MR | Zbl

[2] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[3] I. S. Ashmanov, A. Yu. Olshanskii, “Ob abelevykh i tsentralnykh rasshireniyakh asfericheskikh grupp”, Izv. vuzov. Matem., 1985, no. 11, 48–60 | MR | Zbl

[4] S. I. Adyan, “O nekotorykh gruppakh bez krucheniya”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 459–468 | MR | Zbl

[5] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR

[6] Yu. S. Semenov, “O nekotorykh faktorgruppakh giperbolicheskikh grupp”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1993, no. 3, 88–90 | MR | Zbl

[7] Yu. S. Semenov, Nekotorye konstruktsii faktor-grupp i kolets dlya giperbolicheskikh grupp, Dis. $\dots$ kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 1994

[8] A. Yu. Ol'shanskii, “On residualing homomorphisms and $G$-subgroups of hyperbolic groups”, Internat. J. Algebra Comput., 3:4 (1993), 365–409 | DOI | MR

[9] O. V. Kulikova, “Ob otnositelno asfericheskikh kopredstavleniyakh i ikh tsentralnykh rasshireniyakh”, Fundament. i prikl. matem., 11:2 (2005), 115–125 | MR | Zbl