Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_114_1_a7, author = {M. I. Kamenskii and V. V. Obukhovskii and G. Petrosyan}, title = {On {Almost} {Periodic} {Trajectories} of {Control} {Systems} with {Feedback} in the {Form} of {Sweeping} {Processes}}, journal = {Matemati\v{c}eskie zametki}, pages = {104--112}, publisher = {mathdoc}, volume = {114}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/} }
TY - JOUR AU - M. I. Kamenskii AU - V. V. Obukhovskii AU - G. Petrosyan TI - On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes JO - Matematičeskie zametki PY - 2023 SP - 104 EP - 112 VL - 114 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/ LA - ru ID - MZM_2023_114_1_a7 ER -
%0 Journal Article %A M. I. Kamenskii %A V. V. Obukhovskii %A G. Petrosyan %T On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes %J Matematičeskie zametki %D 2023 %P 104-112 %V 114 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/ %G ru %F MZM_2023_114_1_a7
M. I. Kamenskii; V. V. Obukhovskii; G. Petrosyan. On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/
[1] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR
[2] M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Progr. Nonlin. Diff. Equ. Appl., 9, Birkhäuser, Basel, 1993 | MR
[3] M. Valadier, “Rafle et viabilitë”, Sëm. Anal. Convexe, 22:17 (1992) | MR
[4] S. Adly, B. K. Le, “Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces”, J. Optim. Theory Appl., 169:2 (2016), 407–423 | DOI | MR
[5] B. Brogliato, L. Thibault, “Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems”, J. Convex Anal., 17:3–4 (2010), 961–990 | MR
[6] C. Castaing, M. Monteiro Marques, “BV periodic solutions of an evolution problem associated with continuous moving convex sets”, Set-Valued Anal., 3:4 (1995), 381–399 | DOI | MR
[7] L. Paoli, “Continuous dependence on data for vibro-impact problems”, Math. Models Methods Appl. Sci., 15:1 (2005), 53–93 | DOI | MR
[8] J. F. Edmond, L. Thibault, “Relaxation of an optimal control problem involving a perturbed sweeping process”, Math. Program., 104:2–3 (2005), 347–373 | DOI | MR
[9] M. Kamenskii, O. Makarenkov, L. N. Wadippuli, P. Raynaud de Fitte, “Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations”, Nonlinear Anal. Hybrid Syst., 30 (2018), 213–224 | DOI | MR
[10] B. M. Levitan, V. V. Zhikov, Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR
[11] L. I. Danilov, “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl
[12] S. V. Zelik, “O pochti-periodicheskikh resheniyakh nekotorogo klassa lineinykh giperbolicheskikh uravnenii”, Matem. zametki, 56:2 (1994), 146–149 | MR | Zbl
[13] V. E. Slyusarchuk, “Usloviya suschestvovaniya pochti periodicheskikh reshenii nelineinykh raznostnykh uravnenii v banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 277–285 | DOI | MR | Zbl
[14] A. R. Shirikyan, “O klassicheskikh pochti-periodicheskikh resheniyakh nelineinykh giperbolicheskikh uravnenii”, Matem. zametki, 54:6 (1993), 146–148 | MR | Zbl
[15] V. V. Zhikov, “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN SSSR. Ser. matem., 40:6 (1976), 1380–1408 | MR | Zbl
[16] A. I. Perov, “Periodicheskie, pochti-periodicheskie i ogranichennye resheniya differentsialnogo uravneniya $dx/dt=f(t,x)$”, Dokl. AN SSSR, 132:3 (1960), 531–534 | MR | Zbl
[17] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Voronezhskogo gos. un-ta. Ser.: Fizika. Matem., 5 (2005), 196–207
[18] M. Kamenskii, P. Nistri, “An averaging method for singularly perturbed systems of semilinear differential inclusions with $C_0$-semigroups”, Set-Valued Anal., 11:4 (2003), 345–357 | DOI | MR