On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 104-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider a control system with feedback in the form of sweeping processes in Hilbert spaces. Using the notion of generalized metric space and A. I. Perov's contraction mapping principle, we present a theorem on the existence and uniqueness of an almost periodic solution of this system and justify the application of the averaging principle to systems of this kind.
Keywords: differential equation, control system, differential inclusion, sweeping process, almost periodic function, generalized metric space, generalized contraction operator, exponentially stable matrix.
@article{MZM_2023_114_1_a7,
     author = {M. I. Kamenskii and V. V. Obukhovskii and G. Petrosyan},
     title = {On {Almost} {Periodic} {Trajectories} of {Control} {Systems} with {Feedback} in the {Form} of {Sweeping} {Processes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {104--112},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/}
}
TY  - JOUR
AU  - M. I. Kamenskii
AU  - V. V. Obukhovskii
AU  - G. Petrosyan
TI  - On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes
JO  - Matematičeskie zametki
PY  - 2023
SP  - 104
EP  - 112
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/
LA  - ru
ID  - MZM_2023_114_1_a7
ER  - 
%0 Journal Article
%A M. I. Kamenskii
%A V. V. Obukhovskii
%A G. Petrosyan
%T On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes
%J Matematičeskie zametki
%D 2023
%P 104-112
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/
%G ru
%F MZM_2023_114_1_a7
M. I. Kamenskii; V. V. Obukhovskii; G. Petrosyan. On Almost Periodic Trajectories of Control Systems with Feedback in the Form of Sweeping Processes. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 104-112. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a7/

[1] J. J. Moreau, “Evolution problem associated with a moving convex set in a Hilbert space”, J. Differential Equations, 26:3 (1977), 347–374 | DOI | MR

[2] M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems, Progr. Nonlin. Diff. Equ. Appl., 9, Birkhäuser, Basel, 1993 | MR

[3] M. Valadier, “Rafle et viabilitë”, Sëm. Anal. Convexe, 22:17 (1992) | MR

[4] S. Adly, B. K. Le, “Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces”, J. Optim. Theory Appl., 169:2 (2016), 407–423 | DOI | MR

[5] B. Brogliato, L. Thibault, “Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems”, J. Convex Anal., 17:3–4 (2010), 961–990 | MR

[6] C. Castaing, M. Monteiro Marques, “BV periodic solutions of an evolution problem associated with continuous moving convex sets”, Set-Valued Anal., 3:4 (1995), 381–399 | DOI | MR

[7] L. Paoli, “Continuous dependence on data for vibro-impact problems”, Math. Models Methods Appl. Sci., 15:1 (2005), 53–93 | DOI | MR

[8] J. F. Edmond, L. Thibault, “Relaxation of an optimal control problem involving a perturbed sweeping process”, Math. Program., 104:2–3 (2005), 347–373 | DOI | MR

[9] M. Kamenskii, O. Makarenkov, L. N. Wadippuli, P. Raynaud de Fitte, “Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations”, Nonlinear Anal. Hybrid Syst., 30 (2018), 213–224 | DOI | MR

[10] B. M. Levitan, V. V. Zhikov, Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo Mosk. un-ta, M., 1978 | MR

[11] L. I. Danilov, “O pochti periodicheskikh mnogoznachnykh otobrazheniyakh”, Matem. zametki, 68:1 (2000), 82–90 | DOI | MR | Zbl

[12] S. V. Zelik, “O pochti-periodicheskikh resheniyakh nekotorogo klassa lineinykh giperbolicheskikh uravnenii”, Matem. zametki, 56:2 (1994), 146–149 | MR | Zbl

[13] V. E. Slyusarchuk, “Usloviya suschestvovaniya pochti periodicheskikh reshenii nelineinykh raznostnykh uravnenii v banakhovom prostranstve”, Matem. zametki, 97:2 (2015), 277–285 | DOI | MR | Zbl

[14] A. R. Shirikyan, “O klassicheskikh pochti-periodicheskikh resheniyakh nelineinykh giperbolicheskikh uravnenii”, Matem. zametki, 54:6 (1993), 146–148 | MR | Zbl

[15] V. V. Zhikov, “Nekotorye voprosy dopustimosti i dikhotomii. Printsip usredneniya”, Izv. AN SSSR. Ser. matem., 40:6 (1976), 1380–1408 | MR | Zbl

[16] A. I. Perov, “Periodicheskie, pochti-periodicheskie i ogranichennye resheniya differentsialnogo uravneniya $dx/dt=f(t,x)$”, Dokl. AN SSSR, 132:3 (1960), 531–534 | MR | Zbl

[17] A. I. Perov, “Obobschennyi printsip szhimayuschikh otobrazhenii”, Voronezhskogo gos. un-ta. Ser.: Fizika. Matem., 5 (2005), 196–207

[18] M. Kamenskii, P. Nistri, “An averaging method for singularly perturbed systems of semilinear differential inclusions with $C_0$-semigroups”, Set-Valued Anal., 11:4 (2003), 345–357 | DOI | MR