On Some Properties of Solutions of Switched Differential Equations
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 94-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an important class of hybrid systems, called switching systems, in which a continuous process is controlled by a discrete control between different subsystems. In the case where the switching system has a periodic solution, a lower bound for its period is obtained. For a second-order linear switched differential equation, an inequality is proved that allows one to estimate the distance between two successive zeros of its solution.
Keywords: switching system, periodic solution, Lyapunov inequality.
@article{MZM_2023_114_1_a6,
     author = {A. O. Ignatyev},
     title = {On {Some} {Properties} of {Solutions} of {Switched} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {94--103},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a6/}
}
TY  - JOUR
AU  - A. O. Ignatyev
TI  - On Some Properties of Solutions of Switched Differential Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 94
EP  - 103
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a6/
LA  - ru
ID  - MZM_2023_114_1_a6
ER  - 
%0 Journal Article
%A A. O. Ignatyev
%T On Some Properties of Solutions of Switched Differential Equations
%J Matematičeskie zametki
%D 2023
%P 94-103
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a6/
%G ru
%F MZM_2023_114_1_a6
A. O. Ignatyev. On Some Properties of Solutions of Switched Differential Equations. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 94-103. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a6/

[1] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston, MA, 2003 | MR

[2] A. Schild, J. Lunze, “Switching surface design for periodically operated discretely controlled continuous systems”, Hybrid Systems: Computation and Control, Lecture Notes in Comput. Sci., 4981, Springer, Berlin, 2008, 471–485 | MR

[3] J. P. Hespanha, D. Liberzon, A. S. Morse, “Logic-based switching control of a nonholonomic system with parametric modeling uncertainty”, Systems Control Lett., 38:3 (1999), 167–177 | DOI | MR

[4] D. Liberzon, A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Systems, 19:5 (1999), 59–70 | DOI

[5] Z. Sun, S. S. Ge, Stability Theory of Switched Dynamical Systems, Springer-Verlag, London, 2011 | MR

[6] Y. Ma, H. Kawakami, C. K. Tse, “Bifurcation analysis of switched dynamical systems with periodically moving borders”, IEEE Trans. Circuits Syst. I. Regul. Pap., 51:6 (2004), 1184–1193 | DOI | MR

[7] H. Asahara, T. Kousaka, “Stability analysis of state-time-dependent nonlinear hybrid dynamical systems”, IEEJ Trans. Electrical and Electronic Engineering, 2018, 1–6

[8] A. Yu. Aleksandrov, A. V. Platonov, “Ob asimptoticheskoi ustoichivosti reshenii gibridnykh mnogosvyaznykh sistem”, Avtomatika i telemekhanika, 75:5 (2014), 18–30 | MR

[9] A. S. Fursov, S. I. Minyaev, E. A. Iskhakov, “Postroenie tsifrovogo stabilizatora dlya pereklyuchaemoi lineinoi sistemy”, Differents. uravneniya, 53:8 (2017), 1121–1127 | DOI | MR

[10] A. S. Fursov, I. V. Kapalin, Kh. Khonshan, “Stabilizatsiya vektornykh po vkhodu pereklyuchaemykh lineinykh sistem regulyatorom peremennoi struktury”, Differents. uravneniya, 53:11 (2017), 1532–1542 | DOI

[11] D. Corona, A. Giu, C. Seatzu, “Stabilization of switched systems via optimal control”, Nonlinear Anal. Hybrid Syst., 11:1 (2014), 1–10 | DOI | MR

[12] H. Lin, P. J. Antsaklis, “Stability and stabilizability of switched linear systems: a survey of recent results”, IEEE Trans. Automat. Control, 54:2 (2009), 308–322 | DOI | MR

[13] G. J. Olsder, “On the existence of periodic behaviour of switched linear systems”, Internat. J. Systems Sci., 42:6 (2011), 1035–1045 | DOI | MR

[14] M. Porfiri, D. G. Roberson, D. J. Stilwell, “Fast switching analysis of linear switched systems using exponential splitting”, SIAM J. Control Optim., 47:5 (2008), 2582–2597 | DOI | MR

[15] L. Vu, D. Liberzon, “Common Lyapunov functions for families of commuting nonlinear systems”, Systems Control Lett., 54:5 (2005), 405–416 | DOI | MR

[16] H. Yanga, B. Jiang, V. Cocquempot, “A survey of results and perspectives on stabilization of switched nonlinear systems with unstable modes”, Nonlinear Anal. Hybrid Syst., 13:1 (2014), 45–60 | DOI | MR

[17] L. Dieci, C. Elia, “Periodic orbits for planar piecewise smooth systems with a line of discontinuity”, J. Dynam. Differential Equations, 26:4 (2014), 1049–1078 | DOI | MR

[18] M. R. A. Gouveia, J. Llibre, D. D. Novaes, C. Pessoa, “Piecewise smooth dynamical systems: persistence of periodic solutions and normal forms”, J. Differential Equations, 260:7 (2016), 6108–6129 | DOI | MR

[19] L. Dieci, C. Elia, “Periodic orbits for planar piecewise smooth systems with a line of discontinuity”, J. Dynam. Differential Equations, 26:4 (2014), 1049–1078 | DOI | MR

[20] Y. Iwatani, S. Hara, “Stability tests and stabilization for piecewise linear systems based on poles and zeros of subsystems”, Automatica J. IFAC, 42:10 (2006), 1685–1695 | DOI | MR

[21] J. Llibre, A. C. Mereu, D. D. Novaes, “Averaging theory for discontinuous piecewise differential systems”, J. Differential Equations, 258:11 (2015), 4007–4032 | DOI | MR

[22] J.-Y. Su, X. Wang, K.-Y. Cai, “Periodic orbit analysis of switched linear systems”, International Conference on Automation and Logistics, 2007, 2007, 1425–1430

[23] A. Bacciotti, “Stability control and recurrent switching rules”, Internat. J. Robust Nonlinear Control, 23:6 (2012), 663–680 | DOI | MR

[24] A. Bacciotti, L. Mazzi, “Stabilisability of nonlinear systems by means of time-dependent switching rules”, Internat. J. Control, 83:4 (2010), 810–815 | DOI | MR

[25] C. Perez, F. Benitez, J. B. Garcia-Gutierrez, “A method for stabilizing continuous-time switched linear systems”, Nonlinear Anal. Hybrid Syst., 33 (2019), 300–310 | DOI | MR

[26] D. D. Thuan, L. V. Ngoc, “Robust stability and robust stabilizability for periodically switched linear systems”, Appl. Math. Comput., 361 (2019), 112–130 | DOI | MR

[27] A. E. Aroudi, M. Debbat, L. Martinez-Salamero, “Poincaré maps modeling and local orbital stability analysis of discontinuous piecewise affine periodically driven systems”, Nonlinear Dynam., 50:3 (2007), 431–445 | DOI | MR

[28] W. Fenchel, “Über Krümmung und Windung geschlossener Raumkurven”, Math. Ann., 101:1 (1929), 238–252 | DOI | MR

[29] K. Borsuk, “Sur la courbure totale des courbes fermées”, Ann. Soc. Polon. Math., 20 (1947), 251–265 | MR

[30] A. O. Ignatev, “Granitsy periodov periodicheskikh reshenii obyknovennykh differentsialnykh uravnenii”, Ukr. matem. zhurn., 67:11 (2016), 1569–1572 | MR

[31] A. M. Lyapunov, “Stability of motion: general problem”, Internat. J. Control, 55:3 (1992), 701–767

[32] A. Wintner, “On the non-existence of conjugate points”, Amer. J. Math., 73 (1951), 368–380 | DOI | MR

[33] A. O. Ignatev, “O neravenstve tipa Lyapunova”, Izv. vuzov. Matem., 2020, no. 6, 21–29 | DOI