On Integral Operators with Homogeneous Kernels in Weighted Lebesgue Spaces on the Heisenberg Group
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 144-148

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Heisenberg group, integral operator, homogeneous kernel, boundedness.
@article{MZM_2023_114_1_a11,
     author = {O. G. Avsyankin},
     title = {On {Integral} {Operators} with {Homogeneous} {Kernels} in {Weighted} {Lebesgue} {Spaces} on the {Heisenberg} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {144--148},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a11/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - On Integral Operators with Homogeneous Kernels in Weighted Lebesgue Spaces on the Heisenberg Group
JO  - Matematičeskie zametki
PY  - 2023
SP  - 144
EP  - 148
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a11/
LA  - ru
ID  - MZM_2023_114_1_a11
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T On Integral Operators with Homogeneous Kernels in Weighted Lebesgue Spaces on the Heisenberg Group
%J Matematičeskie zametki
%D 2023
%P 144-148
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a11/
%G ru
%F MZM_2023_114_1_a11
O. G. Avsyankin. On Integral Operators with Homogeneous Kernels in Weighted Lebesgue Spaces on the Heisenberg Group. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 144-148. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a11/