On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 133-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with maximal operators associated with a family of singular hypersurfaces in the space $\mathbb{R}^{n+1}$. The boundedness of these operators in the space of integrable functions is proved for the case in which the singular hypersurfaces are given by parametric equations. The boundedness exponent of maximal operators for spaces of integrable functions is found.
Keywords: maximal operator, averaging operator, fractional power series, regular point
Mots-clés : singular hypersurface.
@article{MZM_2023_114_1_a10,
     author = {S. E. Usmanov},
     title = {On the {Boundedness} of the {Maximal} {Operators} {Associated} with {Singular} {Hypersurfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a10/}
}
TY  - JOUR
AU  - S. E. Usmanov
TI  - On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces
JO  - Matematičeskie zametki
PY  - 2023
SP  - 133
EP  - 143
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a10/
LA  - ru
ID  - MZM_2023_114_1_a10
ER  - 
%0 Journal Article
%A S. E. Usmanov
%T On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces
%J Matematičeskie zametki
%D 2023
%P 133-143
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a10/
%G ru
%F MZM_2023_114_1_a10
S. E. Usmanov. On the Boundedness of the Maximal Operators Associated with Singular Hypersurfaces. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 133-143. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a10/

[1] E. M. Stein, “Maximal functions. Spherical means”, Proc. Nat. Acad. Sci. U.S.A., 73:7 (1976), 2174–2175 | DOI | MR

[2] J. Bourgain, “Averages in the plane over convex curves and maximal operators”, J. Analyse Math., 47 (1986), 69–85 | DOI | MR

[3] A. Greenleaf, “Principal curvature and harmonic analysis”, Indiana Univ. Math. J., 30:4 (1981), 519–537 | DOI | MR

[4] C. D. Sogge, “Maximal operators associated to hypersurfaces with one nonvanishing principal curvature”, Fourier Analysis and Partial Differential Equations (Miraflores de la Sierra, 1992), Stud. Adv. Math., CRC, Boca Raton, FL, 1995, 317–323 | MR

[5] C. D. Sogge, E. M. Stein, “Averages of functions over hypersurfaces in $\mathbb{R}^{n}$”, Invent. Math., 82:3 (1985), 543–556 | DOI | MR

[6] M. Cowling, G. Mauceri, “Inequalities for some maximal functions. II”, Trans. Amer. Math. Soc., 296:1 (1986), 341–365 | DOI | MR

[7] A. Nagel, A. Seeger, S. Wainger, “Averages over convex hypersurfaces”, Amer. J. Math., 115:4 (1993), 903–927 | DOI | MR

[8] A. Iosevich, E. Sawyer, “Oscillatory integrals and maximal averages over homogeneous surfaces”, Duke Math. J., 82:1 (1996), 103–141 | DOI | MR

[9] A. Iosevich, E. Sawyer, “Maximal averages over surfaces”, Adv. Math., 132:1 (1997), 46–119 | DOI | MR

[10] A. Iosevich, E. Sawyer, A. Seeger, “On averaging operators associated with convex hypersurfaces of finite type”, J. Anal. Math., 79 (1999), 159–187 | DOI | MR

[11] I. A. Ikromov, M. Kempe, D. Müller, “Damped oscillatory integrals and boundedness of maximal operators associated to mixed homogeneous hypersurfaces”, Duke Math. J., 126:3 (2005), 471–490 | DOI | MR

[12] I. A. Ikromov, M. Kempe, D. Müller, “Estimates for maximal functions associated with hypersurfaces in $\mathbb R^3$ and related problems of harmonic analysis”, Acta Math., 204:2 (2010), 151–271 | DOI | MR

[13] I. A. Ikromov, “Dempfirovannye ostsillyatornye integraly i maksimalnye operatory”, Matem. zametki, 78:6 (2005), 833–852 | DOI | MR | Zbl

[14] I. A. Ikromov, S. E. Usmanov, “On the boundedness of maximal operators associated with hypersurfaces”, J. Math. Sci. (N.Y.), 264:6 (2022), 715–745 | DOI | MR

[15] S. E. Usmanov, “The boundedness of maximal operators associated with singular surfaces”, Russian Math. (Iz. VUZ), 65:6 (2021), 73–83 | MR

[16] S. E. Usmanov, “On the boundedness problem of maximal operators”, Russ Math., 66:4 (2022), 74–83 | DOI

[17] T. Collins, A. Greenleaf, M. Pramanik, “A multi-dimensional resolution of singularities with applications to analysis”, Amer. J. Math., 135:5 (2013), 1179–1252 | DOI | MR

[18] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1979 | MR

[19] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR

[20] G. E. Shilov, Matematicheskii analiz (funktsii neskolkikh veschestvennykh peremennykh), Nauka, M., 1972 | MR