On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on the continuous dependence of a solution of a differential equation on the right-hand side and on the boundary conditions of general form.
Keywords: differential equation, boundary conditions
Mots-clés : conjugate point.
@article{MZM_2023_114_1_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {On the {Continuous} {Dependence} of a {Solution} of a {Differential} {Equation} on the {Right-Hand} {Side} and {Boundary} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions
JO  - Matematičeskie zametki
PY  - 2023
SP  - 3
EP  - 17
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/
LA  - ru
ID  - MZM_2023_114_1_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions
%J Matematičeskie zametki
%D 2023
%P 3-17
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/
%G ru
%F MZM_2023_114_1_a0
E. R. Avakov; G. G. Magaril-Il'yaev. On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/

[1] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2007

[2] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, MIR, M., 1969 | MR

[3] E. R. Avakov, G. G. Magaril-Ilyaev, “Obschaya teorema o neyavnoi funktsii dlya blizkikh otobrazhenii”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy MIAN, 315, MIAN, M., 2021, 7–18 | DOI

[4] G. G. Magaril-Ilyaev, V.M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, URSS, M., 2020 | MR

[5] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 2005 | MR