On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions
Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 3-17
Cet article a éte moissonné depuis la source Math-Net.Ru
A theorem is proved on the continuous dependence of a solution of a differential equation on the right-hand side and on the boundary conditions of general form.
Keywords:
differential equation, boundary conditions
Mots-clés : conjugate point.
Mots-clés : conjugate point.
@article{MZM_2023_114_1_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {On the {Continuous} {Dependence} of a {Solution} of a {Differential} {Equation} on the {Right-Hand} {Side} and {Boundary} {Conditions}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--17},
year = {2023},
volume = {114},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/}
}
TY - JOUR AU - E. R. Avakov AU - G. G. Magaril-Il'yaev TI - On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions JO - Matematičeskie zametki PY - 2023 SP - 3 EP - 17 VL - 114 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/ LA - ru ID - MZM_2023_114_1_a0 ER -
%0 Journal Article %A E. R. Avakov %A G. G. Magaril-Il'yaev %T On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions %J Matematičeskie zametki %D 2023 %P 3-17 %V 114 %N 1 %U http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/ %G ru %F MZM_2023_114_1_a0
E. R. Avakov; G. G. Magaril-Il'yaev. On the Continuous Dependence of a Solution of a Differential Equation on the Right-Hand Side and Boundary Conditions. Matematičeskie zametki, Tome 114 (2023) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2023_114_1_a0/
[1] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2007
[2] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, MIR, M., 1969 | MR
[3] E. R. Avakov, G. G. Magaril-Ilyaev, “Obschaya teorema o neyavnoi funktsii dlya blizkikh otobrazhenii”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy MIAN, 315, MIAN, M., 2021, 7–18 | DOI
[4] G. G. Magaril-Ilyaev, V.M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, URSS, M., 2020 | MR
[5] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 2005 | MR