Chebyshev Sets with Piecewise Continuous Metric Projection
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 905-917.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of Chebyshev sets composed of at most countably many sets with a continuous metric projection. Local solarity is established in neighborhoods on which the metric projection is single-valued and continuous in uniformly convex spaces. As examples of applications of the results obtained, we consider generalized fractions and products, as well as ridge functions.
Keywords: uniformly convex spaces, metric projection, Chebyshev sets, local solarity.
@article{MZM_2023_113_6_a9,
     author = {I. G. Tsar'kov},
     title = {Chebyshev {Sets} with {Piecewise} {Continuous} {Metric} {Projection}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {905--917},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a9/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Chebyshev Sets with Piecewise Continuous Metric Projection
JO  - Matematičeskie zametki
PY  - 2023
SP  - 905
EP  - 917
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a9/
LA  - ru
ID  - MZM_2023_113_6_a9
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Chebyshev Sets with Piecewise Continuous Metric Projection
%J Matematičeskie zametki
%D 2023
%P 905-917
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a9/
%G ru
%F MZM_2023_113_6_a9
I. G. Tsar'kov. Chebyshev Sets with Piecewise Continuous Metric Projection. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 905-917. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a9/

[1] I. G. Tsar'kov, “Properties of suns in the spaces $L^1$ and $C(Q)$”, Russ. J. Math. Phys., 28:3 (2021), 398–405 | DOI | MR

[2] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[3] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (312) (1996), 125–188 | DOI | MR | Zbl

[4] A. R. Alimov, I. G. Tsarkov, “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundament. i prikl. matem., 19:4 (2014), 21–91 | MR

[5] A R. Alimov, I. G. Tsar'kov, “Ball-complete sets and solar properties of sets in asymmetric spaces”, Results Math., 77:2 (2022), 86 | DOI | MR

[6] A. R. Alimov, I. G. Tsar'kov, Geometric Approximation Theory, Springer-Verlag, Cham, 2021 | DOI | MR

[7] A R. Alimov, I. G. Tsar'kov, “Suns, moons, and $\mathring B$-complete sets in asymmetric spaces”, Set-Valued Var. Anal., 30:3 (2022), 1233–1245 | DOI | MR

[8] A. R. Alimov, I. G. Tsarkov, “$B$-polnye mnozhestva i ikh approksimativnye i strukturnye svoistva”, Sib. matem. zhurn., 63:3 (2022), 500–509 | DOI

[9] I. G. Tsarkov, “Nepreryvnost metricheskoi proektsii, strukturnye i approksimativnye svoistva mnozhestv”, Matem. zametki, 47:2 (1990), 137–148 | MR | Zbl

[10] I. G. Tsar'kov, “The distance function and boundedness of diameters of the nearest elements”, Modern Methods in Operator Theory and Harmonic Analysis, Springer Proc. Math. Stat., 291, Springer-Verlag, Cham, 2019, 263–272 | DOI | MR

[11] I. G. Tsarkov, “Approksimativnaya kompaktnost i needinstvennost v variatsionnykh zadachakh i ikh prilozheniya k differentsialnym uravneniyam”, Matem. sb., 202:6 (2011), 133–158 | DOI | MR | Zbl

[12] I. G. Tsarkov, “Needinstvennost reshenii nekotorykh differentsialnykh uravnenii i ikh svyaz s geometricheskoi teoriei priblizheniya”, Matem. zametki, 75:2 (2004), 287–301 | DOI | MR | Zbl

[13] I. G. Tsar'kov, “Singular sets of surfaces”, Russ. J. Math. Phys., 24:2 (2017), 263–271 | DOI | MR

[14] I. G. Tsar'kov, “Geometry of the singular set of hypersurfaces and the eikonal equation”, Russ. J. Math. Phys., 29:2 (2022), 240–248 | DOI | MR

[15] N. V. Efimov, S. B. Stechkin, “Approksimativnaya kompaktnost i chebyshevskie mnozhestva”, Dokl. AN SSSR, 140:3 (1961), 522–524 | MR | Zbl