Definition and Properties of Measures of Stability and Instability of Zero Solution of a Differential System
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 895-904

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the possibility randomly of choosing the initial value for a perturbed solution of a given differential system so that it remained close to the initial zero solution. In this regard, we introduce completely new concepts and study (as applied to different classes of systems) the measure of stability and the measure of instability of various types: Lyapunov, Perron, or upper-limit.
Keywords: differential system, Lyapunov stability, Perron stability, upper-limit stability, measure of stability.
@article{MZM_2023_113_6_a8,
     author = {I. N. Sergeev},
     title = {Definition and {Properties} of {Measures} of {Stability} and {Instability} of {Zero} {Solution} of a {Differential} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {895--904},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a8/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Definition and Properties of Measures of Stability and Instability of Zero Solution of a Differential System
JO  - Matematičeskie zametki
PY  - 2023
SP  - 895
EP  - 904
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a8/
LA  - ru
ID  - MZM_2023_113_6_a8
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Definition and Properties of Measures of Stability and Instability of Zero Solution of a Differential System
%J Matematičeskie zametki
%D 2023
%P 895-904
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a8/
%G ru
%F MZM_2023_113_6_a8
I. N. Sergeev. Definition and Properties of Measures of Stability and Instability of Zero Solution of a Differential System. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 895-904. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a8/