Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_6_a7, author = {P. G. Potseiko and Y. A. Rovba}, title = {On {Estimates} of {Uniform} {Approximations} by {Rational} {Fourier--Chebyshev} {Integral} {Operators} for a {Certain} {Choice} of {Poles}}, journal = {Matemati\v{c}eskie zametki}, pages = {876--894}, publisher = {mathdoc}, volume = {113}, number = {6}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a7/} }
TY - JOUR AU - P. G. Potseiko AU - Y. A. Rovba TI - On Estimates of Uniform Approximations by Rational Fourier--Chebyshev Integral Operators for a Certain Choice of Poles JO - Matematičeskie zametki PY - 2023 SP - 876 EP - 894 VL - 113 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a7/ LA - ru ID - MZM_2023_113_6_a7 ER -
%0 Journal Article %A P. G. Potseiko %A Y. A. Rovba %T On Estimates of Uniform Approximations by Rational Fourier--Chebyshev Integral Operators for a Certain Choice of Poles %J Matematičeskie zametki %D 2023 %P 876-894 %V 113 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a7/ %G ru %F MZM_2023_113_6_a7
P. G. Potseiko; Y. A. Rovba. On Estimates of Uniform Approximations by Rational Fourier--Chebyshev Integral Operators for a Certain Choice of Poles. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 876-894. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a7/
[1] S. Bernstein, “Sur la meilleure approximation de $|x|$ par des polynomes de degrés donnés”, Acta Math., 37:1 (1914), 1–57 | DOI | MR
[2] R. S. Varga, A. J. Carpenter, “On the Bernstein conjecture in approximation theory”, Constr. Approx., 1:4 (1985), 333–348 | DOI | MR
[3] D. I. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11 (1964), 11–14 | DOI | MR
[4] A. P. Bulanov, “Asimptotika dlya naimenshikh uklonenii $|x|$ ot ratsionalnykh funktsii”, Matem. sb., 76 (118):2 (1968), 288–303 | MR | Zbl
[5] N. S. Vyacheslavov, “O ravnomernom priblizhenii $|x|$ ratsionalnymi funktsiyami”, Dokl. AN SSSR, 220:3 (1975), 512–515 | MR | Zbl
[6] G. Shtal, “Nailuchshie ravnomernye ratsionalnye approksimatsii $|x|$ na $[-1,1]$”, Matem. sb., 183:8 (1992), 85–118 | MR | Zbl
[7] S. N. Bernshtein, “O nailuchshem priblizhenii $|x|^p$ pri pomoschi mnogochlenov vesma vysokoi stepeni”, Izv. AN SSSR. Ser. matem., 2:2 (1938), 169–190 | Zbl
[8] S. M. Nikolskii, “O nailuchshem priblizhenii mnogochlenami v srednem funktsii $|a-x|^s$”, Izv. AN SSSR. Ser. matem., 11:2 (1947), 139–180 | MR | Zbl
[9] R. A. Raitsin, “Asimptoticheskie svoistva ravnomernykh priblizhenii funktsii s algebraicheskimi osobennostyami chastichnymi summami ryada Fure–Chebysheva”, Izv. vuzov. Matem., 1980, no. 3, 45–49 | MR | Zbl
[10] M. I. Ganzburg, “The Bernstein constant and polynomial interpolation at the Chebyshev nodes”, J. Approx. Theory, 119:2 (2002), 193–213 | DOI | MR
[11] M. Revers, “On the asymptotics of polynomial interpolation to $|x|^\alpha$ at the Chebyshev nodes”, J. Approx. Theory, 165:1 (2013), 70–82 | DOI | MR
[12] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii nepreryvnykh funktsii s kharakternymi osobennostyami”, Matem. sb., 73 (115):4 (1967), 630–638 | MR | Zbl
[13] G. Freud, J. Szabados, “Rational approximation to $x^\alpha$”, Acta Math. Acad. Sci. Hungar., 18:4 (1967), 393–399 | DOI | MR
[14] J. Tzimbalario, “Rational approximation to $x^\alpha$”, J. Approximation Theory, 16:2 (1976), 187–193 | DOI | MR
[15] T. Ganelius, “Rational approximation to $x^\alpha$ on $[0,1]$”, Anal. Math., 5:1 (1979), 19–33 | DOI | MR
[16] J.-E. Andersson, “Rational approximation to functions like $x^\alpha$ in integral norms”, Anal. Math., 14:1 (1988), 11–25 | DOI | MR
[17] N. S. Vyacheslavov, “Ob approksimatsii $x^\alpha$ ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 92–109 | MR | Zbl
[18] H. Stahl, “Best uniform rational approximation of $x^\alpha$ on $[0,1]$”, Bull. Amer. Math. Soc. (N.S.), 28:1 (1993), 116–122 | DOI | MR
[19] A. A. Pekarskii, “Approksimatsiya funktsii $z^{\alpha}$ ratsionalnymi drobyami v oblasti s nulevym vneshnim uglom”, Matem. zametki, 91:5 (2012), 761–772 | DOI | MR
[20] S. Takenaka, “On the orthogonal functions and a new formula of interpolations”, Japanese J. of Math., 2 (1925), 129–145 | DOI
[21] F. Malmquist, “Sur la détermination d'une classe de fonctions analytiques par leurs dans un ensemble donné de points”, Compte Rendus Sixiéme Congrés Math. Scand, Kopenhagen, Denmark, 1925, 253–259
[22] M. M. Dzhrbashyan, “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN Arm. SSR. Ser. fiz.-matem. nauk, 9:7 (1956), 3–28
[23] G. S. Kocharyan, “O priblizhenii ratsionalnymi funktsiyami v kompleksnoi oblasti”, Izv. AN Arm. SSR. Ser. fiz.-matem. nauk, 11:4 (1958), 53–77
[24] A. A. Kitbalyan, “Razlozheniya po obobschennym trigonometricheskim sistemam”, Izv. AN Arm. SSR. Ser. fiz.-matem. nauk, 16:6 (1963), 3–24 | MR
[25] V. N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd. BGU im. V. I. Lenina, Minsk, 1979 | MR
[26] P. P. Petrushev, B. A. Popov, Rational Approximation of Real Functions, University Press, Cambridge, 1987 | MR
[27] Y. Rouba, P. Patseika, K. Smatrytski, “On a system of rational Chebyshev–Markov fractions”, Anal. Math., 44:1 (2018), 115–140 | DOI | MR
[28] E. A. Rovba, P. G. Potseiko, “Approksimatsiya funktsii $|x|^s$ na otrezke $[-1,1]$ chastichnymi summami ratsionalnogo ryada Fure–Chebysheva”, Vest. Grodzenskogo un-ta, 9:3 (2019), 16–28
[29] E. A. Rovba, P. G. Potseiko, “O ratsionalnoi approksimatsii funktsii markovskogo vida chastichnymi summami ryadov Fure po odnoi sisteme Chebysheva–Markova”, Matem. zametki, 108:4 (2020), 572–587 | DOI | MR
[30] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR
[31] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR
[32] E. A. Rovba, “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, Dokl. AN BSSR, 23:11 (1979), 968–971 | MR
[33] P. G. Potseiko, E. A. Rovba, “Priblizheniya na klassakh integralov Puassona ratsionalnymi integralnymi operatorami Fure–Chebysheva”, Sib. matem. zhurn., 62:2 (2021), 362–386 | DOI | MR
[34] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR
[35] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR