On a Refinement of the Schneider–Lang theorem
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 863-875
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider some arithmetic properties of values of meromorphic functions $g_1(z)$, ..., $g_m(z)$ such that each of $g'_i(z)$ is algebraically dependent over a field $K$ of algebraic numbers, $[K:\mathbb Q]<\infty$, with the functions $g_1(z),\dots,g_m(z)$. We show that if all $\{g_i(z)\}$ are meromorphic of finite order, then either they all are rational functions, or they all are rational functions of some exponential, or they all are elliptic functions, or there exists a discrete set $U$ such that the number of points $z\notin U$ such that all $\{g_i( z)\}$ lie in $K$ is finite.
Keywords:
meromorphic function, rational function.
@article{MZM_2023_113_6_a6,
author = {V. A. Podkopaeva and A. Ya. Yanchenko},
title = {On a {Refinement} of the {Schneider{\textendash}Lang} theorem},
journal = {Matemati\v{c}eskie zametki},
pages = {863--875},
year = {2023},
volume = {113},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/}
}
V. A. Podkopaeva; A. Ya. Yanchenko. On a Refinement of the Schneider–Lang theorem. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 863-875. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/
[1] S. Leng, Algebra, Mir, M., 1968 | MR
[2] A. O. Gelfond, Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952 | MR
[3] A. E. Eremenko, “Meromorfnye resheniya algebraicheskikh differentsialnykh uravnenii”, UMN, 37:4 (226) (1982), 53–82 | MR | Zbl
[4] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR