On a Refinement of the Schneider--Lang theorem
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 863-875.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some arithmetic properties of values of meromorphic functions $g_1(z)$, …, $g_m(z)$ such that each of $g'_i(z)$ is algebraically dependent over a field $K$ of algebraic numbers, $[K:\mathbb Q]\infty$, with the functions $g_1(z),\dots,g_m(z)$. We show that if all $\{g_i(z)\}$ are meromorphic of finite order, then either they all are rational functions, or they all are rational functions of some exponential, or they all are elliptic functions, or there exists a discrete set $U$ such that the number of points $z\notin U$ such that all $\{g_i( z)\}$ lie in $K$ is finite.
Keywords: meromorphic function, rational function.
@article{MZM_2023_113_6_a6,
     author = {V. A. Podkopaeva and A. Ya. Yanchenko},
     title = {On a {Refinement} of the {Schneider--Lang} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {863--875},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/}
}
TY  - JOUR
AU  - V. A. Podkopaeva
AU  - A. Ya. Yanchenko
TI  - On a Refinement of the Schneider--Lang theorem
JO  - Matematičeskie zametki
PY  - 2023
SP  - 863
EP  - 875
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/
LA  - ru
ID  - MZM_2023_113_6_a6
ER  - 
%0 Journal Article
%A V. A. Podkopaeva
%A A. Ya. Yanchenko
%T On a Refinement of the Schneider--Lang theorem
%J Matematičeskie zametki
%D 2023
%P 863-875
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/
%G ru
%F MZM_2023_113_6_a6
V. A. Podkopaeva; A. Ya. Yanchenko. On a Refinement of the Schneider--Lang theorem. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 863-875. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a6/

[1] S. Leng, Algebra, Mir, M., 1968 | MR

[2] A. O. Gelfond, Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952 | MR

[3] A. E. Eremenko, “Meromorfnye resheniya algebraicheskikh differentsialnykh uravnenii”, UMN, 37:4 (226) (1982), 53–82 | MR | Zbl

[4] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR