Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 849-862
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of determining the nonmonotone complexity of the implementation of $k$-valued logic functions by logic circuits in bases consisting of all monotone (with respect to the standard order) functions and finitely many nonmonotone functions is investigated. In calculating the complexity measure under examination only those elements of the circuit which are assigned nonmonotone basis functions are taken into account. The nonmonotone complexity of an arbitrary $k$-valued logic function is determined with high accuracy, namely, upper and lower bounds which differ by a constant not exceeding $3 \log_2 k+4$ are found.
Keywords:
multi-valued logic function, logic circuit, circuit complexity, bases with zero weight elements, nonmonotone complexity, inversion complexity, Markov's theorem.
@article{MZM_2023_113_6_a5,
author = {V. V. Kochergin and A. V. Mikhailovich},
title = {Improvement of {Nonmonotone} {Complexity} {Estimates} of $k${-Valued} {Logic} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {849--862},
publisher = {mathdoc},
volume = {113},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a5/}
}
TY - JOUR AU - V. V. Kochergin AU - A. V. Mikhailovich TI - Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions JO - Matematičeskie zametki PY - 2023 SP - 849 EP - 862 VL - 113 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a5/ LA - ru ID - MZM_2023_113_6_a5 ER -
V. V. Kochergin; A. V. Mikhailovich. Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 849-862. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a5/