On the Growth of Birkhoff Sums over a Rotation of the Circle
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 836-848.

Voir la notice de l'article provenant de la source Math-Net.Ru

Even Poincaré had constructed an example which implies the existence of an irrational rotation of the circle and a function continuous on it with zero mean for which the Birkhoff sums at separate points tend to infinity as the number of iterations grows. The strict ergodicity in this case is a natural constraint on the growth rate of Birkhoff sums: the sequence of Birkhoff means uniformly tends to zero on the circle. The paper shows that any prescribed admissible rate of growth of Birkhoff sums within the ergodic theorem can be realized, and the set of points at which the sums grow with a given speed is massive: it has the Hausdorff dimension one.
Keywords: Birkhoff sums, strict ergodicity
Mots-clés : Hausdorff dimension.
@article{MZM_2023_113_6_a4,
     author = {A. V. Kochergin},
     title = {On the {Growth} of {Birkhoff} {Sums} over a {Rotation} of the {Circle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {836--848},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a4/}
}
TY  - JOUR
AU  - A. V. Kochergin
TI  - On the Growth of Birkhoff Sums over a Rotation of the Circle
JO  - Matematičeskie zametki
PY  - 2023
SP  - 836
EP  - 848
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a4/
LA  - ru
ID  - MZM_2023_113_6_a4
ER  - 
%0 Journal Article
%A A. V. Kochergin
%T On the Growth of Birkhoff Sums over a Rotation of the Circle
%J Matematičeskie zametki
%D 2023
%P 836-848
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a4/
%G ru
%F MZM_2023_113_6_a4
A. V. Kochergin. On the Growth of Birkhoff Sums over a Rotation of the Circle. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 836-848. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a4/

[1] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947

[2] H. Poincaré, “Sur les series trigonometriques”, Comptes rendues, 101:2 (1885), 1131–1134

[3] V. V. Kozlov, Metody kachestvennogo analiza v dinamike tverdogo tela, RKhD, Izhevsk, 2000 | MR

[4] W. H. Gottschalk, G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955 | MR

[5] E. A. Sidorov, “Topologicheski tranzitivnye tsilindricheskie kaskady”, Matem. zametki, 14:3 (1973), 441–452 | MR | Zbl

[6] A. V. Kochergin, “Ob otsutstvii peremeshivaniya u spetsialnykh potokov nad povorotom okruzhnosti i potokov na dvumernom tore”, Dokl. AN SSSR, 205:3 (1972), 515–518 | MR | Zbl

[7] V. V. Kozlov, “Ob odnoi zadache Puankare”, Problemy matem. i mekhan., 40:2 (1976), 352–355

[8] A. B. Krygin, “Ob $\omega$-predelnykh mnozhestvakh gladkikh tsilindricheskikh kaskadov”, Matem. zametki, 23:6 (1978), 873–884 | MR | Zbl

[9] E. A. Sidorov, “Ob usloviyakh ravnomernoi ustoichivosti po Puassonu tsilindricheskikh sistem”, UMN, 34:6 (210) (1979), 184–188 | MR | Zbl

[10] A. S. Besicovitch, “A problem on topological transformations of the plane. II”, Proc. Cambridge Philos. Soc., 47 (1951), 38–45 | DOI | MR

[11] K. Fraczek, M. Lemańczyk, “On the Hausdorff dimension of the set of closed orbits for a cylindrical transformation”, Nonlinearity, 23:10 (2010), 2393–2422 | DOI | MR

[12] A. V. Kochergin, “Tsilindricheskii kaskad Bezikovicha s gelderovoi funktsiei”, Matem. zametki, 99:3 (2016), 366–375 | DOI | MR

[13] A. V. Kochergin, “Novye primery tranzitivnykh tsilindricheskikh kaskadov so svoistvom Bezikovicha”, Matem. sb., 209:9 (2018), 3–18 | DOI | MR

[14] E. Dymek, Transitive Cylinder Flows Whose Set of Discrete Points Is of Full Hausdorff Dimension, arXiv: math.DS/1303.3099v1

[15] N. G. Moschevitin, “Raspredelenie znachenii lineinykh funktsii i asimptoticheskoe povedenie traektorii nekotorykh dinamicheskikh sistem”, Matem. zametki, 58:3 (1995), 394–410 | MR | Zbl

[16] A. B. Antonevich, Ali A. Shukur, “Otsenki norm stepenei operatora, porozhdennogo irratsionalnym povorotom”, Dokl. NAN Belarusi, 61:1 (2017), 30–35 | MR

[17] A. B. Antonevich, A. V. Kochergin, Ali A. Shukur, “O povedenii summ Birkgofa, porozhdennykh povorotami okruzhnosti”, Matem. sb., 213:7 (2022), 3–38 | DOI

[18] A. Ya. Khinchin, Tsepnye drobi, Fizmatgiz, M., 1961 | MR

[19] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, Hoboken, NJ, 2003 | MR