On Nonfree Actions of Commuting Involutions on Manifolds
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 820-826.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new lower bound is obtained relating the rational cohomological length of the base and that of the total space of branched coverings of orientable manifolds for the case in which the branched covering is a projection onto the quotient space by the action of commuting involutions on the total space. This bound is much stronger than the classical Burstein–Edmonds 1978 bound which holds for arbitrary branched coverings of orientable manifolds. In the framework of the theory of branched coverings, results are obtained that are motivated by the problems concerning $n$-valued topological groups. We explicitly construct $m-1$ commuting involutions acting as automorphisms on the torus $T^m$ with the orbit space $\mathbb{R}P^m$ for any odd $m\ge 3$. By the construction thus obtained, the manifold $\mathbb{R}P^m$ carries the structure of an $2^{m-1}$-valued Abelian topological group for all odd $m\ge 3$.
Keywords: actions of finite groups, cohomological length, branched coverings of manifolds, $n$-valued groups.
@article{MZM_2023_113_6_a2,
     author = {D. V. Gugnin},
     title = {On {Nonfree} {Actions} of {Commuting} {Involutions} on {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {820--826},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a2/}
}
TY  - JOUR
AU  - D. V. Gugnin
TI  - On Nonfree Actions of Commuting Involutions on Manifolds
JO  - Matematičeskie zametki
PY  - 2023
SP  - 820
EP  - 826
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a2/
LA  - ru
ID  - MZM_2023_113_6_a2
ER  - 
%0 Journal Article
%A D. V. Gugnin
%T On Nonfree Actions of Commuting Involutions on Manifolds
%J Matematičeskie zametki
%D 2023
%P 820-826
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a2/
%G ru
%F MZM_2023_113_6_a2
D. V. Gugnin. On Nonfree Actions of Commuting Involutions on Manifolds. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 820-826. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a2/

[1] D. V. Gugnin, “Razvetvlennye nakrytiya mnogoobrazii i $nH$-prostranstva”, Funkts. analiz i ego pril., 53:2 (2019), 68–71 | DOI | MR

[2] A. V. Chernavskii, “Konechnokratnye otkrytye otobrazheniya mnogoobrazii”, Matem. sb., 65 (107):3 (1964), 357–369 | MR | Zbl

[3] I. Berstein, A. L. Edmonds, “The degree and branch set of a branced covering”, Invent. Math., 45:3 (1978), 213–220 | DOI | MR

[4] D. V. Gugnin, “O nizhnikh otsenkakh na stepen razvetvlennykh nakrytii mnogoobrazii”, Matem. zametki, 103:2 (2018), 186–195 | DOI | MR

[5] V. M. Buchstaber, “$n$-valued groups: theory and applications”, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[6] V. M. Bukhshtaber, A. P. Veselov, A. A. Gaifullin, “Klassifikatsiya involyutivnykh kommutativnykh dvuznachnykh grupp”, UMN, 77:4 (2022), 91–172 | DOI

[7] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR