Mots-clés : bifurcation
@article{MZM_2023_113_6_a13,
author = {S. A. Kaschenko and A. O. Tolbey},
title = {Bifurcations in the {Logistic} {Equation} with {Diffusion} and {Delay} in the {Boundary} {Condition}},
journal = {Matemati\v{c}eskie zametki},
pages = {940--944},
year = {2023},
volume = {113},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/}
}
TY - JOUR AU - S. A. Kaschenko AU - A. O. Tolbey TI - Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition JO - Matematičeskie zametki PY - 2023 SP - 940 EP - 944 VL - 113 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/ LA - ru ID - MZM_2023_113_6_a13 ER -
S. A. Kaschenko; A. O. Tolbey. Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 940-944. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/
[1] J. D. Murray, Mathematical Biology, v. II, Interdisciplinary Appl. Math., 18, Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | DOI | MR
[2] J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer-Verlag, New York, 1996 | DOI | MR
[3] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Engrg., 191, Academic Press, Boston, 1993 | MR
[4] S. A. Gourley, J. W. H. Sou, J. H. Wu, J. Math. Sci. (N.Y.), 124:4 (2004), 5119–5153 | DOI | MR
[5] S. A. Kaschenko, Izv. vuzov. Matem., 2020, no. 10, 47–64 | DOI | MR
[6] S. A. Kaschenko, Matem. zametki, 98:1 (2015), 85–100 | DOI | MR
[7] S. A. Kaschenko, Matem. zametki, 102:2 (2017), 216–230 | DOI | MR
[8] G. Oster, J. Guckenheimer, The Hopf Bifurcation and Its Applications, Applied Math. Sci., 19, Springer, New York, 1976, 327–353 | DOI | MR
[9] S. A. Kashchenko, Automatic Control and Comp. Sci., 47 (2013), 470–494 | DOI
[10] S. A. Kaschenko, D. O. Loginov, Matem. zametki, 106:1 (2019), 138–143 | DOI | MR
[11] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977 | MR
[12] P. Hartman, Ordinary Differential Equations, Classics in App. Math., 38, Philadelphia, PA, USA, 2002 | DOI | MR
[13] A. D. Bruno, Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin, 1989 | MR
[14] S. A. Kashchenko, Mathematics, 10:5 (2022), 775 | DOI