Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 940-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: logistic equation, delay, asymptotics, boundary value problem, normal form.
Mots-clés : bifurcation
@article{MZM_2023_113_6_a13,
     author = {S. A. Kaschenko and A. O. Tolbey},
     title = {Bifurcations in the {Logistic} {Equation} with {Diffusion} and {Delay} in the {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {940--944},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/}
}
TY  - JOUR
AU  - S. A. Kaschenko
AU  - A. O. Tolbey
TI  - Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition
JO  - Matematičeskie zametki
PY  - 2023
SP  - 940
EP  - 944
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/
LA  - ru
ID  - MZM_2023_113_6_a13
ER  - 
%0 Journal Article
%A S. A. Kaschenko
%A A. O. Tolbey
%T Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition
%J Matematičeskie zametki
%D 2023
%P 940-944
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/
%G ru
%F MZM_2023_113_6_a13
S. A. Kaschenko; A. O. Tolbey. Bifurcations in the Logistic Equation with Diffusion and Delay in the Boundary Condition. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 940-944. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a13/

[1] J. D. Murray, Mathematical Biology, v. II, Interdisciplinary Appl. Math., 18, Spatial Models and Biomedical Applications, Springer-Verlag, New York, 2003 | DOI | MR

[2] J. Wu, Theory and Applications of Partial Functional Differential Equations, Appl. Math. Sci., 119, Springer-Verlag, New York, 1996 | DOI | MR

[3] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Math. Sci. Engrg., 191, Academic Press, Boston, 1993 | MR

[4] S. A. Gourley, J. W. H. Sou, J. H. Wu, J. Math. Sci. (N.Y.), 124:4 (2004), 5119–5153 | DOI | MR

[5] S. A. Kaschenko, Izv. vuzov. Matem., 2020, no. 10, 47–64 | DOI | MR

[6] S. A. Kaschenko, Matem. zametki, 98:1 (2015), 85–100 | DOI | MR

[7] S. A. Kaschenko, Matem. zametki, 102:2 (2017), 216–230 | DOI | MR

[8] G. Oster, J. Guckenheimer, The Hopf Bifurcation and Its Applications, Applied Math. Sci., 19, Springer, New York, 1976, 327–353 | DOI | MR

[9] S. A. Kashchenko, Automatic Control and Comp. Sci., 47 (2013), 470–494 | DOI

[10] S. A. Kaschenko, D. O. Loginov, Matem. zametki, 106:1 (2019), 138–143 | DOI | MR

[11] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977 | MR

[12] P. Hartman, Ordinary Differential Equations, Classics in App. Math., 38, Philadelphia, PA, USA, 2002 | DOI | MR

[13] A. D. Bruno, Local Methods in Nonlinear Differential Equations, Springer-Verlag, Berlin, 1989 | MR

[14] S. A. Kashchenko, Mathematics, 10:5 (2022), 775 | DOI