Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the coefficient ring $W^*(pt)=\varOmega_W^*$ of the $c_1$-spherical bordism theory for an arbitrary $SU$-bilinear multiplication. We prove that for any $SU$-bilinear multiplication the formal group of the theory $W^*$ is Landweber exact. Also we show that after inverting the set $\mathcal{P}$ of Fermat primes there exists a complex orientation of the localized theory $W^*[\mathcal{P}^{-1}]$ such that the coefficients of the corresponding formal group law generate the whole coefficient ring $\varOmega_W^*[\mathcal{P}^{-1}]$.
Keywords: $c_1$-spherical bordism, formal group laws, Landweber exactness.
@article{MZM_2023_113_6_a10,
     author = {G. S. Chernykh},
     title = {Landweber {Exactness} of the {Formal} {Group} {Law} in $c_1${-Spherical} {Bordism}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {918--928},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/}
}
TY  - JOUR
AU  - G. S. Chernykh
TI  - Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
JO  - Matematičeskie zametki
PY  - 2023
SP  - 918
EP  - 928
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/
LA  - ru
ID  - MZM_2023_113_6_a10
ER  - 
%0 Journal Article
%A G. S. Chernykh
%T Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
%J Matematičeskie zametki
%D 2023
%P 918-928
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/
%G ru
%F MZM_2023_113_6_a10
G. S. Chernykh. Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/