Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of the coefficient ring $W^*(pt)=\varOmega_W^*$ of the $c_1$-spherical bordism theory for an arbitrary $SU$-bilinear multiplication. We prove that for any $SU$-bilinear multiplication the formal group of the theory $W^*$ is Landweber exact. Also we show that after inverting the set $\mathcal{P}$ of Fermat primes there exists a complex orientation of the localized theory $W^*[\mathcal{P}^{-1}]$ such that the coefficients of the corresponding formal group law generate the whole coefficient ring $\varOmega_W^*[\mathcal{P}^{-1}]$.
Keywords: $c_1$-spherical bordism, formal group laws, Landweber exactness.
@article{MZM_2023_113_6_a10,
     author = {G. S. Chernykh},
     title = {Landweber {Exactness} of the {Formal} {Group} {Law} in $c_1${-Spherical} {Bordism}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {918--928},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/}
}
TY  - JOUR
AU  - G. S. Chernykh
TI  - Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
JO  - Matematičeskie zametki
PY  - 2023
SP  - 918
EP  - 928
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/
LA  - ru
ID  - MZM_2023_113_6_a10
ER  - 
%0 Journal Article
%A G. S. Chernykh
%T Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
%J Matematičeskie zametki
%D 2023
%P 918-928
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/
%G ru
%F MZM_2023_113_6_a10
G. S. Chernykh. Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/

[1] S. P. Novikov, “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 855–951 | MR | Zbl

[2] R. Stong, Zametki po teorii kobordizmov, S dobavleniem V. M. Bukhshtabera, Mir, M., 1973 | MR

[3] I. Yu. Limonchenko, T. E. Panov, G. S. Chernykh, “$SU$-bordizmy: strukturnye rezultaty i geometricheskie predstaviteli”, UMN, 74:3 (447) (2019), 95–166 | DOI | MR

[4] P. E. Conner, E. E. Floyd, “Torsion in $SU$-bordism”, Mem. Amer. Math. Soc., 60 (1966) | MR

[5] T. E. Panov, G. S. Chernykh, “$SU$-Lineinye operatsii v kompleksnykh kobordizmakh i teoriya $c_1$-sfericheskikh bordizmov”, Izv. RAN. Ser. matem., 87:4 (2023) (to appear)

[6] V. M. Bukhshtaber, “Proektory v unitarnykh kobordizmakh, svyazannye s $SU$-teoriei”, UMN, 27:6 (168) (1972), 231–232 | MR | Zbl

[7] S. P. Novikov, “Gomotopicheskie svoistva kompleksov Toma”, Matem. sb., 57 (99):4 (1962), 407–442 | MR | Zbl

[8] D. G. Quillen, “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75:6 (1969), 1293–1298 | DOI | MR

[9] Dzh. F. Adams, Stabilnye gomotopii i obobschennye gomologii, Izdatelstvo MTsNMO, M., 2014 | MR

[10] P. S. Landweber, “Homological properties of comodules over $MU_*$ ($MU$) and $BP_*$ ($BP$)”, Amer. J. Math., 98:3 (1976), 591–610 | DOI | MR

[11] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Pure and Appl. Math., 121, Academic Press, Orlando, FL, 1986 | MR