Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the structure of the coefficient ring $W^*(pt)=\varOmega_W^*$ of the $c_1$-spherical bordism theory for an arbitrary $SU$-bilinear multiplication. We prove that for any $SU$-bilinear multiplication the formal group of the theory $W^*$ is Landweber exact. Also we show that after inverting the set $\mathcal{P}$ of Fermat primes there exists a complex orientation of the localized theory $W^*[\mathcal{P}^{-1}]$ such that the coefficients of the corresponding formal group law generate the whole coefficient ring $\varOmega_W^*[\mathcal{P}^{-1}]$.
Keywords:
$c_1$-spherical bordism, formal group laws, Landweber exactness.
@article{MZM_2023_113_6_a10,
author = {G. S. Chernykh},
title = {Landweber {Exactness} of the {Formal} {Group} {Law} in $c_1${-Spherical} {Bordism}},
journal = {Matemati\v{c}eskie zametki},
pages = {918--928},
publisher = {mathdoc},
volume = {113},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/}
}
G. S. Chernykh. Landweber Exactness of the Formal Group Law in $c_1$-Spherical Bordism. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 918-928. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a10/