Semigroups of Relatively Continuous Binary Relations
Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 807-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

All isomorphisms between semigroups of relatively continuous binary relations defined on arbitrary topological spaces are described. As a corollary, the absolute definability of any nontrivial topological space by the semigroup of all of its relatively continuous binary relations is proved.
Keywords: binary relation, topological space, semigroup of relatively continuous binary relations, isomorphism of semigroups, induced isomorphism, absolute definability.
@article{MZM_2023_113_6_a1,
     author = {V. I. Varankina and E.M. Vechtomov},
     title = {Semigroups of {Relatively} {Continuous} {Binary} {Relations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {807--819},
     publisher = {mathdoc},
     volume = {113},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a1/}
}
TY  - JOUR
AU  - V. I. Varankina
AU  - E.M. Vechtomov
TI  - Semigroups of Relatively Continuous Binary Relations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 807
EP  - 819
VL  - 113
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a1/
LA  - ru
ID  - MZM_2023_113_6_a1
ER  - 
%0 Journal Article
%A V. I. Varankina
%A E.M. Vechtomov
%T Semigroups of Relatively Continuous Binary Relations
%J Matematičeskie zametki
%D 2023
%P 807-819
%V 113
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a1/
%G ru
%F MZM_2023_113_6_a1
V. I. Varankina; E.M. Vechtomov. Semigroups of Relatively Continuous Binary Relations. Matematičeskie zametki, Tome 113 (2023) no. 6, pp. 807-819. http://geodesic.mathdoc.fr/item/MZM_2023_113_6_a1/

[1] L. Gillman, M. Jerison, Rings of Continuous Functions, Springer-Verlag, New York, 1960 | MR

[2] I. M. Gelfand, A. N. Kolmogorov, “O koltsakh nepreryvnykh funktsii na topologicheskikh prostranstvakh”, Dokl. AN SSSR, 22:1 (1939), 11–15

[3] E. M. Vechtomov, “Voprosy opredelyaemosti topologicheskikh prostranstv algebraicheskimi sistemami nepreryvnykh funktsii”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 28, VINITI, M., 1990, 3–46 | MR | Zbl

[4] E. M. Vechtomov, “Polukoltso nepreryvnykh sootvetstvii na topologicheskikh prostranstvakh”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii: materialy XVIII Mezhdunarodnoi konferentsii, posv. stoletiyu so dnya rozhdeniya professorov B. M. Bredikhina, V. I. Nechaeva i S. B. Stechkina, TGPU im. L. N. Tolstogo, Tula, 2020, 100–102

[5] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[6] J. Riguet, “Relations binaires, fermetures, correspondances de Galois”, Bull. Soc. Math. France, 76 (1948), 114–155 | DOI | MR

[7] R. Engelking, Obschaya topologiya, Mir, M., 1984 | MR

[8] K. D. Maggil, “Isomorphisms of triform semigroups”, J. Austral. Math. Soc., 10 (1969), 185–193 | DOI | MR

[9] S. B. O'Reilly, “The characteristic semigroup of a topological space”, General Topology and Appl., 5:2 (1975), 92–106 | MR

[10] K. D. Maggil, “A survey of semigroups of continuous selfmaps”, Semigroup Forum, 11:3 (1976), 189–282 | MR

[11] J. S. Golan, Semirings and Their Applications, Kluwer Acad. Publ., Dordrecht, 1999 | MR

[12] E. M. Vechtomov, “Isomorphisms of semirings of continuous binary relations on topological spaces”, Semigroup Forum, 106:1 (2023), 327–331 | DOI | MR