Slow Convergences of Ergodic Averages
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 742-746
Cet article a éte moissonné depuis la source Math-Net.Ru
Birkhoff's theorem asserts that, for an ergodic automorphism, time averages converge to the space average. Krengel showed that, for a given sequence $\psi(n)\to+0$ and any ergodic automorphism, there exists an indicator function such that the corresponding time means converge a.e. slower than $\psi$. We give a new proof of the absence of estimates for rates of convergence, answering a question of Podvigin.
Keywords:
ergodic averages, convergence almost everywhere, rate of convergence.
Mots-clés : convergence in norm
Mots-clés : convergence in norm
@article{MZM_2023_113_5_a9,
author = {V. V. Ryzhikov},
title = {Slow {Convergences} of {Ergodic} {Averages}},
journal = {Matemati\v{c}eskie zametki},
pages = {742--746},
year = {2023},
volume = {113},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/}
}
V. V. Ryzhikov. Slow Convergences of Ergodic Averages. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 742-746. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/
[1] U. Krengel, “On the speed of convergence in the ergodic theorem”, Monatsh. Math., 86:1 (1978), 3–6 | DOI | MR
[2] I. V. Podvigin, “O vozmozhnykh otsenkakh skorosti potochechnoi skhodimosti v ergodicheskoi teoreme Birkgofa”, Sib. matem. zhurn., 63:2 (2022), 379–390 | DOI | MR
[3] S. Alpern, “Return times and conjugates of an antiperiodic transformation”, Ergodic Theory Dynam. Systems, 1:2 (1981), 135–143 | DOI | MR
[4] A. A. Prikhodko, V. V. Ryzhikov, “Maksimalnaya lemma Rokhlina–Khalmosha–Alperna”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1996, no. 3, 37–41 | MR | Zbl