Slow Convergences of Ergodic Averages
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 742-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

Birkhoff's theorem asserts that, for an ergodic automorphism, time averages converge to the space average. Krengel showed that, for a given sequence $\psi(n)\to+0$ and any ergodic automorphism, there exists an indicator function such that the corresponding time means converge a.e. slower than $\psi$. We give a new proof of the absence of estimates for rates of convergence, answering a question of Podvigin.
Keywords: ergodic averages, convergence almost everywhere, rate of convergence.
Mots-clés : convergence in norm
@article{MZM_2023_113_5_a9,
     author = {V. V. Ryzhikov},
     title = {Slow {Convergences} of {Ergodic} {Averages}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {742--746},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Slow Convergences of Ergodic Averages
JO  - Matematičeskie zametki
PY  - 2023
SP  - 742
EP  - 746
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/
LA  - ru
ID  - MZM_2023_113_5_a9
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Slow Convergences of Ergodic Averages
%J Matematičeskie zametki
%D 2023
%P 742-746
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/
%G ru
%F MZM_2023_113_5_a9
V. V. Ryzhikov. Slow Convergences of Ergodic Averages. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 742-746. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a9/

[1] U. Krengel, “On the speed of convergence in the ergodic theorem”, Monatsh. Math., 86:1 (1978), 3–6 | DOI | MR

[2] I. V. Podvigin, “O vozmozhnykh otsenkakh skorosti potochechnoi skhodimosti v ergodicheskoi teoreme Birkgofa”, Sib. matem. zhurn., 63:2 (2022), 379–390 | DOI | MR

[3] S. Alpern, “Return times and conjugates of an antiperiodic transformation”, Ergodic Theory Dynam. Systems, 1:2 (1981), 135–143 | DOI | MR

[4] A. A. Prikhodko, V. V. Ryzhikov, “Maksimalnaya lemma Rokhlina–Khalmosha–Alperna”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1996, no. 3, 37–41 | MR | Zbl