On the Question of the Definability of Certain Classes of Completely Decomposable Abelian Torsion-Free Groups by Their Homomorphism Groups
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 738-741.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C$ be an Abelian group. A class $X$ is said to be a $_{C}H$-class if, for any groups $A,B\in X$, a group isomorphism of $\operatorname{Hom}(C,A)$ and $\operatorname{Hom}(C,B)$ implies an isomorphism of the groups $A$ and $B$. In the paper, conditions on a completely decomposable Abelian group $C$ are investigated under which a class of certain completely decomposable torsion-free Abelian groups is a $_{C}H$-class.
Keywords: completely decomposable Abelian group, definability of Abelian groups.
Mots-clés : homomorphism group
@article{MZM_2023_113_5_a8,
     author = {T. A. Pushkova and A. M. Sebel'din},
     title = {On the {Question} of the {Definability} of {Certain} {Classes} of {Completely} {Decomposable} {Abelian} {Torsion-Free} {Groups} by {Their} {Homomorphism} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {738--741},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a8/}
}
TY  - JOUR
AU  - T. A. Pushkova
AU  - A. M. Sebel'din
TI  - On the Question of the Definability of Certain Classes of Completely Decomposable Abelian Torsion-Free Groups by Their Homomorphism Groups
JO  - Matematičeskie zametki
PY  - 2023
SP  - 738
EP  - 741
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a8/
LA  - ru
ID  - MZM_2023_113_5_a8
ER  - 
%0 Journal Article
%A T. A. Pushkova
%A A. M. Sebel'din
%T On the Question of the Definability of Certain Classes of Completely Decomposable Abelian Torsion-Free Groups by Their Homomorphism Groups
%J Matematičeskie zametki
%D 2023
%P 738-741
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a8/
%G ru
%F MZM_2023_113_5_a8
T. A. Pushkova; A. M. Sebel'din. On the Question of the Definability of Certain Classes of Completely Decomposable Abelian Torsion-Free Groups by Their Homomorphism Groups. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 738-741. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a8/

[1] L. Fuchs, “Resent results and problems on Abelian groups”, Topics in Abelian Groups, Foresman, Chicago, 1963, 9–40 | MR

[2] P. Hill, “Two problems of Fuchs concerning $\mathrm{tor}$ and $\mathrm{hom}$”, J. Algebra, 19:3 (1971), 379–383 | DOI | MR

[3] A. M. Sebeldin, Opredelyaemost abelevykh grupp, Palmarium Acad. Publ., Germany, 2012

[4] T. A. Beregovaya, A. M. Sebeldin, “Opredelyaemost vpolne razlozhimykh abelevykh grupp bez krucheniya gruppami gomomorfizmov”, Matem. zametki, 73:5 (2003), 643–648 | DOI | MR | Zbl

[5] L. Fuks, Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974 | MR

[6] A. M. Sebeldin, “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vuzov. Matem., 1973, no. 7, 77–84 | MR | Zbl

[7] A. M. Sebeldin, “Vpolne razlozhimye abelevy gruppy bez krucheniya s izomorfnymi gruppami endomorfizmov”, Sbornik aspirantskikh rabot po matematike, Tomsk, 1974, 28–34

[8] A. M. Sebeldin, “Isomorphisme naturel des groupes des homomorphismes des groupes Abeliens”, Ann. de L'IPGANG, Conakry, 1982, 155–158