Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_5_a4, author = {P. A. Ivanov and S. N. Melikhov}, title = {Many-Dimensional {Duhamel} {Product} in the {Space} of {Holomorphic} {Functions} and {Backward} {Shift} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {677--692}, publisher = {mathdoc}, volume = {113}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/} }
TY - JOUR AU - P. A. Ivanov AU - S. N. Melikhov TI - Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators JO - Matematičeskie zametki PY - 2023 SP - 677 EP - 692 VL - 113 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/ LA - ru ID - MZM_2023_113_5_a4 ER -
%0 Journal Article %A P. A. Ivanov %A S. N. Melikhov %T Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators %J Matematičeskie zametki %D 2023 %P 677-692 %V 113 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/ %G ru %F MZM_2023_113_5_a4
P. A. Ivanov; S. N. Melikhov. Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 677-692. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/
[1] K. G. Merryfield, S. Watson, “A local algebra structure for $H^p$ of the polydisc”, Colloq. Math., 62:1 (1991), 73–79 | DOI | MR
[2] R. Tapdigoglu, “On the Banach algebra structure for $C^{(n)}$ of the bidisc and related topics”, Illinois J. Math., 64:2 (2020), 185–197 | DOI | MR
[3] N. M. Wigley, “The Duhamel product of analytic functions”, Duke Math. J., 41 (1974), 211–217 | DOI | MR
[4] M. T. Karaev, “O nekotorykh primeneniyakh obyknovennogo i obobschennogo proizvedenii Dyuamelya”, Sib. matem. zhurn., 46:3 (2005), 553–566 | MR
[5] M. T. Karaev, “Algebry Dyuamelya i ikh prilozheniya”, Funkts. analiz i ego pril., 52:1 (2018), 3–12 | DOI | MR
[6] Ya. Mikusinskii, Operatornoe ischislenie, IL, M., 1956 | MR
[7] A. Biswas, A. Lambert, S. Petrovic, “Extended eigenvalues and the Volterra operator”, Glasg. Math. J., 44:3 (2002), 521–534 | DOI | MR
[8] O. A. Ivanova, S. N. Melikhov, “Ob operatorakh, perestanovochnykh s operatorom tipa Pomme v vesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 28:2 (2016), 114–137 | MR
[9] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4 (208) (1979), 97–131 | MR | Zbl
[10] P. A. Ivanov, S. N. Melikhov, “Operator Pomme v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 55–68 | MR
[11] Z. Binderman, “Functional shifts induced by right invertible operators”, Math. Nachr., 157 (1992), 211–224 | DOI | MR
[12] B. A. Taylor, “On weighted polynomial approximation of entire functions”, Pacific J. Math., 36 (1971), 523–539 | DOI | MR
[13] I. H. Dimovski, V. Z. Hristov, “Commutants of the Pommiez operator”, Int. J. Math. Math. Sci., 2005, no. 8, 1239–1251 | DOI | MR
[14] B. V. Shabat, Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR
[15] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Nauka, M., 1968 | MR
[16] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR