Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 677-692.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system $\mathcal D_0$ of partial backward shift operators in a countable inductive limit $E$ of weighted Banach spaces of entire functions of several complex variables is studied. Its commutator subgroup $\mathcal K(\mathcal D_0)$ in the algebra of all continuous linear operators on $E$ operators is described. In the topological dual of $E$, a multiplication $\circledast$ is introduced and studied, which is determined by shifts associated with the system $\mathcal D_0$. For a domain $\Omega$ in $\mathbb C^N$ polystar-shaped with respect to 0, Duhamel product in the space $H(\Omega)$ of all holomorphic functions on $\Omega$ is studied. In the case where, in addition, the domain $\Omega$ is convex, it is shown that the operation $\circledast$ is realized by means of the adjoint of the Laplace transform as Duhamel product.
Keywords: Duhamel product, backward shift operator, space of holomorphic functions.
@article{MZM_2023_113_5_a4,
     author = {P. A. Ivanov and S. N. Melikhov},
     title = {Many-Dimensional {Duhamel} {Product} in the {Space} of {Holomorphic} {Functions} and {Backward} {Shift} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {677--692},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/}
}
TY  - JOUR
AU  - P. A. Ivanov
AU  - S. N. Melikhov
TI  - Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators
JO  - Matematičeskie zametki
PY  - 2023
SP  - 677
EP  - 692
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/
LA  - ru
ID  - MZM_2023_113_5_a4
ER  - 
%0 Journal Article
%A P. A. Ivanov
%A S. N. Melikhov
%T Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators
%J Matematičeskie zametki
%D 2023
%P 677-692
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/
%G ru
%F MZM_2023_113_5_a4
P. A. Ivanov; S. N. Melikhov. Many-Dimensional Duhamel Product in the Space of Holomorphic Functions and Backward Shift Operators. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 677-692. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a4/

[1] K. G. Merryfield, S. Watson, “A local algebra structure for $H^p$ of the polydisc”, Colloq. Math., 62:1 (1991), 73–79 | DOI | MR

[2] R. Tapdigoglu, “On the Banach algebra structure for $C^{(n)}$ of the bidisc and related topics”, Illinois J. Math., 64:2 (2020), 185–197 | DOI | MR

[3] N. M. Wigley, “The Duhamel product of analytic functions”, Duke Math. J., 41 (1974), 211–217 | DOI | MR

[4] M. T. Karaev, “O nekotorykh primeneniyakh obyknovennogo i obobschennogo proizvedenii Dyuamelya”, Sib. matem. zhurn., 46:3 (2005), 553–566 | MR

[5] M. T. Karaev, “Algebry Dyuamelya i ikh prilozheniya”, Funkts. analiz i ego pril., 52:1 (2018), 3–12 | DOI | MR

[6] Ya. Mikusinskii, Operatornoe ischislenie, IL, M., 1956 | MR

[7] A. Biswas, A. Lambert, S. Petrovic, “Extended eigenvalues and the Volterra operator”, Glasg. Math. J., 44:3 (2002), 521–534 | DOI | MR

[8] O. A. Ivanova, S. N. Melikhov, “Ob operatorakh, perestanovochnykh s operatorom tipa Pomme v vesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 28:2 (2016), 114–137 | MR

[9] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4 (208) (1979), 97–131 | MR | Zbl

[10] P. A. Ivanov, S. N. Melikhov, “Operator Pomme v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 55–68 | MR

[11] Z. Binderman, “Functional shifts induced by right invertible operators”, Math. Nachr., 157 (1992), 211–224 | DOI | MR

[12] B. A. Taylor, “On weighted polynomial approximation of entire functions”, Pacific J. Math., 36 (1971), 523–539 | DOI | MR

[13] I. H. Dimovski, V. Z. Hristov, “Commutants of the Pommiez operator”, Int. J. Math. Math. Sci., 2005, no. 8, 1239–1251 | DOI | MR

[14] B. V. Shabat, Vvedenie v kompleksnyi analiz, Nauka, M., 1969 | MR

[15] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Nauka, M., 1968 | MR

[16] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR