On the Solvability of Nonlinear Parabolic Functional-Differential
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 747-763.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first mixed boundary value problem for a nonlinear functional-differential equation of parabolic type with shifts in the spatial variables is considered. Sufficient conditions are proved under which a nonlinear differential-difference operator is demicontinuous, coercive, and pseudomonotone on the domain of the operator $\partial_t$. Based on these properties, existence theorems for a generalized solution are proved.
Keywords: nonlinear parabolic functional-differential equation, shift operator, pseudomonotone operator on $W$, ellipticity condition.
@article{MZM_2023_113_5_a10,
     author = {O. V. Solonukha},
     title = {On the {Solvability} of {Nonlinear} {Parabolic} {Functional-Differential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {747--763},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a10/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On the Solvability of Nonlinear Parabolic Functional-Differential
JO  - Matematičeskie zametki
PY  - 2023
SP  - 747
EP  - 763
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a10/
LA  - ru
ID  - MZM_2023_113_5_a10
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On the Solvability of Nonlinear Parabolic Functional-Differential
%J Matematičeskie zametki
%D 2023
%P 747-763
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a10/
%G ru
%F MZM_2023_113_5_a10
O. V. Solonukha. On the Solvability of Nonlinear Parabolic Functional-Differential. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 747-763. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a10/

[1] M. I. Vishik, “O razreshimosti kraevykh zadach dlya kvazilineinykh parabolicheskikh uravnenii vysshikh poryadkov”, Matem. sb., 59 (101) (dopolnitelnyi) (1962), 289–325 | MR | Zbl

[2] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[3] Yu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 9, VINITI, M., 1976, 5–130 | Zbl

[4] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatorno-differentsialnye uravneniya, Mir, M., 1978 | MR

[5] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka. Fizmatlit, M., 1990 | MR

[6] P. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta Math., 115 (1966), 271–310 | DOI

[7] O. V. Solonukha, “On nonlinear nonlocal parabolic problem”, Russ. J. Math. Phys., 29:1 (2022), 121–140 | DOI | MR

[8] A. L. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations”, J. Differential Equations, 63:3 (1986), 332–361 | DOI | MR

[9] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | MR

[10] A. L. Skubachevskii, “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, UMN, 71:5 (431) (2016), 3–112 | DOI | MR | Zbl

[11] L. E. Rossovskii, “Ellipticheskie funktsionalno-differentsialnye uravneniya so szhatiem i rastyazheniem argumentov neizvestnoi funktsii”, Funktsionalno-differentsialnye uravneniya, SMFN, 54, RUDN, M., 2014, 3–138

[12] A. L. Skubachevskii, “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Anal., 32:2 (1998), 261–278 | DOI | MR

[13] A. L. Skubachevskii, A. M. Selitskii, “Vtoraya kraevaya zadacha dlya parabolicheskogo differentsialno-raznostnogo uravneniya”, UMN, 62:1(373) (2007), 207–208 | DOI | MR | Zbl

[14] A. B. Muravnik, “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Uravneniya v chastnykh proizvodnykh, SMFN, 52, RUDN, M., 2014, 3–141

[15] O. V. Solonukha, “The first boundary value problem for quasilinear parabolic differential-difference equations”, Lobachevskii J. Math., 42:5 (2021), 1067–1077 | DOI | MR

[16] O. V. Solonukha, “Ob odnom klasse suschestvenno nelineinykh ellipticheskikh differentsialno-raznostnykh uravnenii”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Trudy MIAN, 283, Nauka, M., 2013, 233–251 | DOI | MR

[17] Z. Guan, A. G. Kartsatos, I. V. Skrypnik, “Ranges of densely defined generalized pseudomonotone perturbations of maximal monotone operators”, J. Differential Equations, 188:1 (2003), 332–351 | DOI | MR

[18] A. L. Skubachevskii, “Kraevye zadachi dlya differentsialno-raznostnykh uravnenii s nesoizmerimymi sdvigami”, Dokl. RAN, 324:6 (1992), 1155–1158 | MR | Zbl

[19] E. P. Ivanova, “Metody issledovaniya differentsialno-raznostnykh uravnenii s nesoizmerimymi sdvigami argumentov”, Materialy Voronezhskoi vesennei matematicheskoi shkoly, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 204, VINITI RAN, M., 2022, 44–52 | DOI

[20] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[21] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[22] O. V. Solonukha, “On nonlinear and quasilinear elliptic functional-differential equations”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 847–868 | DOI | MR