The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 646-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the spatial Tricomi problem for a class of multidimensional hyperbolic-elliptic equations is proved.
Keywords: hyperbolic-elliptic partial differential equation, boundary value problem, Tricomi problem.
@article{MZM_2023_113_5_a1,
     author = {S. A. Aldashev},
     title = {The {Tricomi} {Problem} for a {Class} of {Multidimensional} {Hyperbolic-Elliptic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {646--654},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a1/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations
JO  - Matematičeskie zametki
PY  - 2023
SP  - 646
EP  - 654
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a1/
LA  - ru
ID  - MZM_2023_113_5_a1
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations
%J Matematičeskie zametki
%D 2023
%P 646-654
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a1/
%G ru
%F MZM_2023_113_5_a1
S. A. Aldashev. The Tricomi Problem for a Class of Multidimensional Hyperbolic-Elliptic Equations. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 646-654. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a1/

[1] M. A. Lavrentev, A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa”, Dokl. AN SSSR, 70:3 (1950), 373–376 | MR

[2] A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa”, Tr. MIAN SSSR, 41, Izd-vo AN SSSR, M., 1953, 3–59 | MR | Zbl

[3] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[4] T. H. Otway, Elliptic-Hyperbolic Partial Differential Equations, Springer, Berlin, 2015 | MR

[5] A. V. Bitsadze, Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959 | MR

[6] A. M. Nakhushev, Zadachi so smescheniem dlya uravneniya v chastnykh proizvodnykh, Nauka, M., 2006

[7] A. V. Bitsadze, “K probleme uravnenii smeshannogo tipa v mnogomernykh oblastyakh”, Dokl. AN SSSR, 110:6 (1956), 901–902 | MR

[8] S. A. Aldashev, “Needinstvennost resheniya zadachi Gellerstedta dlya mnogomernogo uravneniya Lavrenteva–Bitsadze”, Mat-ly mezhd. konf. “Differentsialnye uravneiya. Funktsionalnye prostranstva”, Teoriya priblizhenii posv. 100-letiyu S. A. Soboleva, IM SO AN RAN, Novosibirsk, 2008, 93

[9] E. I. Moiseev, P. V. Nefedov, A. A. Kholomeeva, “Analog zadach Trikomi i Franklya v trekhmernykh oblastyakh dlya uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 50:12 (2014), 1672–1675 | MR

[10] S. A. Aldashev, “Needinstvennost resheniya prostranstvennoi zadachi Gellerstedta dlya odnogo klassa mnogomernykh giperbolo-ellipticheskikh uravnenii”, Ukr. matem. zhurn., 62:2 (2010), 265–269 | MR

[11] S. A. Aldashev, “Sobstvennye znacheniya i sobstvennye funktsii zadach Gellerstedta dlya mnogomernogo uravneniya Lavrenteva–Bitsadze”, Ukr. matem. zhurn., 63:7 (2011), 827–832 | MR

[12] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, Fizmatgiz, M., 1962 | MR

[13] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1965 | MR

[14] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[15] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[16] V. I. Smirnov, Kurs vysshei matematiki, t. 4, ch. 2, Nauka, M., 1981 | MR

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973 | MR

[18] S. A. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Iz-vo SO AN SSSR, Novosibirsk, 1962 | MR

[19] S. A. Aldashev, Kraevye zadachi dlya mnogomernykh giperbolicheskikh i smeshannykh uravnenii, Izd-vo “Gylym” AN RK, Almaty, 1994

[20] S. A. Aldashev, “O zadachakh Darbu dlya odnogo klassa mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 34:1 (1998), 64–68 | MR

[21] S. A. Aldashev, Vyrozhdayuschiesya mnogomernye giperbolicheskie uravneniya, Izd-vo Zapadno-Kaz. agr.-tekhn. un-ta, Uralsk, 2007

[22] S. A. Aldashev, “Kriterii edinstvennosti resheniya zadachi Trikomi dlya mnogomernogo uravneniya Lavrenteva–Bitsadze”, Differents. uravneniya, 57:11 (2021), 1564–1567 | MR