Perturbations of an Integer Sequence as Zero Sets of Divisors
Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 633-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider weighted spaces of entire functions obtained as the images of spaces of ultradistributions of minimal type and normal type on the real line under the Fourier–Laplace transform. The divisors of these spaces are studied. Namely, we find conditions on a perturbing sequence under which the sequence of integers perturbed by it will be the zero set of an entire function that is a divisor of one of the above-mentioned spaces.
Mots-clés : ultradistribution, Fourier–Laplace transform
Keywords: zero set, entire function, division theorem, convolution operator.
@article{MZM_2023_113_5_a0,
     author = {N. F. Abuzyarova},
     title = {Perturbations of an {Integer} {Sequence} as {Zero} {Sets} of {Divisors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {633--645},
     publisher = {mathdoc},
     volume = {113},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - Perturbations of an Integer Sequence as Zero Sets of Divisors
JO  - Matematičeskie zametki
PY  - 2023
SP  - 633
EP  - 645
VL  - 113
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a0/
LA  - ru
ID  - MZM_2023_113_5_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T Perturbations of an Integer Sequence as Zero Sets of Divisors
%J Matematičeskie zametki
%D 2023
%P 633-645
%V 113
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a0/
%G ru
%F MZM_2023_113_5_a0
N. F. Abuzyarova. Perturbations of an Integer Sequence as Zero Sets of Divisors. Matematičeskie zametki, Tome 113 (2023) no. 5, pp. 633-645. http://geodesic.mathdoc.fr/item/MZM_2023_113_5_a0/

[1] Zh. Sebastyan-i-Silva, “O nekotorykh klassakh LVP, vazhnykh v prilozheniyakh”, Matematika. Sb. perevodov inostrannykh statei, 1:1 (1957), 60–77

[2] A. V. Abanin, D. A. Abanina, “Teorema deleniya v nekotorykh vesovykh prostranstvakh tselykh funktsii”, Vladikavk. matem. zhurn., 12:3 (2010), 3–20 | MR

[3] R. Meise, B. A. Taylor, D. Vogt, “Equivalence of slowly decreasing conditions and local Fourier expansions”, Indiana Univ. Math. J., 36:4 (1987), 729–756 | DOI | MR

[4] G. Björck, “Linear partial differential operators and generalized distributions”, Ark. Mat., 6 (1965), 351–407 | DOI | MR

[5] A. V. Abanin, Ultradifferentsiruemye funktsii i ultraraspredeleniya, Nauka, M., 2007

[6] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR

[7] A. V. Abanin, I. A. Filipev, “Analiticheskaya realizatsiya prostranstv, sopryazhennykh k prostranstvam beskonechno differentsiruemykh funktsii”, Sib. matem. zhurn., 47:3 (2006), 485–500 | MR | Zbl

[8] L. Ehrenpreis, “Solution of some problems of division. IV. Invertible and elliptic operators”, Amer. J. Math., 57:1 (1960), 522–588 | DOI | MR

[9] D. A. Abanina, “Eksponentsialno-polinomialnyi bazis v prostranstve reshenii odnorodnogo uravneniya svertki na klassakh ultradifferentsiruemykh funktsii”, Vladikavk. matem. zhurn., 13:4 (2011), 3–17 | MR

[10] N. F. Abuzyarova, “O sdvigakh tselochislennoi posledovatelnosti, porozhdayuschikh funktsii, obratimye po Erenpraisu”, Issledovaniya po lineinym operatoram i teorii funktsii. 47, Zap. nauchn. sem. POMI, 480, POMI, SPb., 2019, 5–25

[11] N. F. Abuzyarova, “On conditions of invertibility in the sense of Ehrenpreis in the Schwartz algebra”, Lobachevskii J. Math., 42:6 (2021), 1141–1153 | DOI | MR

[12] N. F. Abuzyarova, “Sokhranenie klassov tselykh funktsii, vydelyaemykh ogranicheniyami na rost vdol veschestvennoi osi, pri vozmuscheniyakh ikh nulei”, Algebra i analiz, 33:4 (2021), 1–31 | MR

[13] N. F. Abuzyarova, “On properties of functions invertible in the sense of Ehrenpreis in the Schwartz algebra”, Eurasian Math. J., 13:1 (2022), 9–18 | DOI | MR

[14] R. A. E. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., New York, 1934 | MR

[15] A. I. Kheifits, “Kharakteristika nulei nekotorykh spetsialnykh klassov tselykh funktsii konechnoi stepeni”, Teoriya funktsii, funkts. anal. i ikh pril., 9 (1969), 3–13

[16] B. Ya. Levin, I. V. Ostrovskii, “O malykh vozmuscheniyakh mnozhestva kornei funktsii tipa sinusa”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 87–110 | MR | Zbl

[17] A. M. Sedletskii, “Asimptotika nulei vyrozhdennoi gipergeometricheskoi funktsii”, Matem. zametki, 82:2 (2007), 262–271 | DOI | MR

[18] A. A. Yukhimenko, “Ob odnom klasse funktsii tipa sinusa”, Matem. zametki, 83:6 (2008), 941–954 | DOI | MR | Zbl

[19] S. Yu. Favorov, “Mnozhestva nulei tselykh funktsii eksponentsialnogo tipa s dopolnitelnymi usloviyami na veschestvennoi pryamoi”, Algebra i analiz, 20:1 (2008), 138–145 | MR | Zbl

[20] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958 | MR