$\mathrm{SOR}$-Like Method for a New Generalized Absolute Value Equation
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 596-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we extend the $\mathrm{SOR}$-like iteration method for a new generalized absolute value equation and obtain its convergence properties. What is more, the optimal parameter of the $\mathrm{SOR}$-like iteration is obtained. The result of numerical experiments shows that the proposed method is reliable and feasible.
Keywords: absolute value equation, $\mathrm{SOR}$-like iteration method, optimal parameter.
@article{MZM_2023_113_4_a8,
     author = {Shuang Yang and W. Shi-Liang},
     title = {$\mathrm{SOR}${-Like} {Method} for a {New} {Generalized} {Absolute} {Value} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {596--603},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a8/}
}
TY  - JOUR
AU  - Shuang Yang
AU  - W. Shi-Liang
TI  - $\mathrm{SOR}$-Like Method for a New Generalized Absolute Value Equation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 596
EP  - 603
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a8/
LA  - ru
ID  - MZM_2023_113_4_a8
ER  - 
%0 Journal Article
%A Shuang Yang
%A W. Shi-Liang
%T $\mathrm{SOR}$-Like Method for a New Generalized Absolute Value Equation
%J Matematičeskie zametki
%D 2023
%P 596-603
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a8/
%G ru
%F MZM_2023_113_4_a8
Shuang Yang; W. Shi-Liang. $\mathrm{SOR}$-Like Method for a New Generalized Absolute Value Equation. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 596-603. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a8/

[1] O. L. Mangasarian, R. R. Meyer, “Absolute value equations”, Linear Algebra Appl., 419:2–3 (2006), 359–367 | DOI | MR

[2] S.-L. Wu, C.-X. Li, “The unique solution of the absolute value equations”, Appl. Math. Lett., 76 (2018), 195–200 | DOI | MR

[3] S.-L. Wu, “The unique solution of a class of the new generalized absolute value equation”, Appl. Math. Lett., 116 (2021), 107029 | DOI | MR

[4] O. L. Mangasarian, “A generalized Newton method for absolute value equations”, Optim. Lett., 3:1 (2009), 101–108 | DOI | MR

[5] H.-Y. Zhou, S.-L. Wu, C.-X. Li, “Newton-based matrix splitting method for generalized absolute value equation”, J. Comput. Appl. Math., 394 (2021), 113578 | DOI | MR | Zbl

[6] M. Noor, J. Iqbal, K. Noor, “On an iterative method for solving absolute value equations”, Optim. Lett., 6:5 (2012), 1027–1033 | DOI | MR

[7] P. Guo, S.-L. Wu, C.-X. Li, “On the $\mathrm{SOR}$-like iteration method for solving absolute value equations”, Appl. Math. Lett., 97 (2019), 107–113 | DOI | MR | Zbl

[8] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 2014 | MR

[9] Y.-F. Ke, “The new iteration algorithm for absolute value equation”, Appl. Math. Lett., 99 (2020), 105990 | DOI | MR