Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_4_a6, author = {D. V. Pyatko and V. L. Chernyshev}, title = {Asymptotics of the {Number} of {End} {Positions} of a {Random} {Walk} on a {Directed} {Hamiltonian} {Metric} {Graph}}, journal = {Matemati\v{c}eskie zametki}, pages = {560--576}, publisher = {mathdoc}, volume = {113}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/} }
TY - JOUR AU - D. V. Pyatko AU - V. L. Chernyshev TI - Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph JO - Matematičeskie zametki PY - 2023 SP - 560 EP - 576 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/ LA - ru ID - MZM_2023_113_4_a6 ER -
%0 Journal Article %A D. V. Pyatko %A V. L. Chernyshev %T Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph %J Matematičeskie zametki %D 2023 %P 560-576 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/ %G ru %F MZM_2023_113_4_a6
D. V. Pyatko; V. L. Chernyshev. Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/
[1] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Math. Surveys and Monographs, 186, AMS, Providence, RI, 2014 | MR
[2] L. Lovasz, “Random walks on graphs: a survey”, Combinatorics, Paul Erdos is Eighty (Keszthely, 1993), Bolyai Soc. Math. Stud., 2, Janos Bolyai Math. Soc., Budapest, 1996, 353–397 | MR
[3] V. L. Chernyshev, A. A. Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, TCDM 2018 2-nd IMA Conference on Theoretical and Computational Discrete Mathematics, Electron. Notes Discrete Math., 70, Elsevier, Amsterdam, 2018, 31–35 | DOI | MR | Zbl
[4] V. L. Chernyshev, A. A. Tolchennikov, “Correction to the leading term of asymptotics in the problem of counting the number of points moving on a metric tree”, Russ. J. Math. Phys., 24:3 (2017), 290–298 | DOI | MR
[5] V. L. Chernyshev, A. A. Tolchennikov, “The second term in the asymptotics for the number of points moving along a metric graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948 | DOI | MR
[6] V. L. Chernyshev, A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014) | MR | Zbl
[7] V. L. Chernyshev, A. A. Tolchennikov, “Asymptotics of the number of endpoints of a random walk on a certain class of directed metric graphs”, Russ. J. Math. Phys., 28:4 (2021), 434–438 | DOI | MR