Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the number of end positions of a random walk on an oriented Hamiltonian metric graph is obtained.
Keywords: counting function, directed graph, dynamical system
Mots-clés : Bernoulli–Barnes polynomial.
@article{MZM_2023_113_4_a6,
     author = {D. V. Pyatko and V. L. Chernyshev},
     title = {Asymptotics of the {Number} of {End} {Positions} of a {Random} {Walk} on a {Directed} {Hamiltonian} {Metric} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {560--576},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/}
}
TY  - JOUR
AU  - D. V. Pyatko
AU  - V. L. Chernyshev
TI  - Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
JO  - Matematičeskie zametki
PY  - 2023
SP  - 560
EP  - 576
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/
LA  - ru
ID  - MZM_2023_113_4_a6
ER  - 
%0 Journal Article
%A D. V. Pyatko
%A V. L. Chernyshev
%T Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
%J Matematičeskie zametki
%D 2023
%P 560-576
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/
%G ru
%F MZM_2023_113_4_a6
D. V. Pyatko; V. L. Chernyshev. Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/