Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of the number of end positions of a random walk on an oriented Hamiltonian metric graph is obtained.
Keywords: counting function, directed graph, dynamical system
Mots-clés : Bernoulli–Barnes polynomial.
@article{MZM_2023_113_4_a6,
     author = {D. V. Pyatko and V. L. Chernyshev},
     title = {Asymptotics of the {Number} of {End} {Positions} of a {Random} {Walk} on a {Directed} {Hamiltonian} {Metric} {Graph}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {560--576},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/}
}
TY  - JOUR
AU  - D. V. Pyatko
AU  - V. L. Chernyshev
TI  - Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
JO  - Matematičeskie zametki
PY  - 2023
SP  - 560
EP  - 576
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/
LA  - ru
ID  - MZM_2023_113_4_a6
ER  - 
%0 Journal Article
%A D. V. Pyatko
%A V. L. Chernyshev
%T Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
%J Matematičeskie zametki
%D 2023
%P 560-576
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/
%G ru
%F MZM_2023_113_4_a6
D. V. Pyatko; V. L. Chernyshev. Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/

[1] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Math. Surveys and Monographs, 186, AMS, Providence, RI, 2014 | MR

[2] L. Lovasz, “Random walks on graphs: a survey”, Combinatorics, Paul Erdos is Eighty (Keszthely, 1993), Bolyai Soc. Math. Stud., 2, Janos Bolyai Math. Soc., Budapest, 1996, 353–397 | MR

[3] V. L. Chernyshev, A. A. Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, TCDM 2018 2-nd IMA Conference on Theoretical and Computational Discrete Mathematics, Electron. Notes Discrete Math., 70, Elsevier, Amsterdam, 2018, 31–35 | DOI | MR | Zbl

[4] V. L. Chernyshev, A. A. Tolchennikov, “Correction to the leading term of asymptotics in the problem of counting the number of points moving on a metric tree”, Russ. J. Math. Phys., 24:3 (2017), 290–298 | DOI | MR

[5] V. L. Chernyshev, A. A. Tolchennikov, “The second term in the asymptotics for the number of points moving along a metric graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948 | DOI | MR

[6] V. L. Chernyshev, A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014) | MR | Zbl

[7] V. L. Chernyshev, A. A. Tolchennikov, “Asymptotics of the number of endpoints of a random walk on a certain class of directed metric graphs”, Russ. J. Math. Phys., 28:4 (2021), 434–438 | DOI | MR