Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics of the number of end positions of a random walk on an
oriented Hamiltonian metric graph is obtained.
Keywords:
counting function, directed graph, dynamical system
Mots-clés : Bernoulli–Barnes polynomial.
Mots-clés : Bernoulli–Barnes polynomial.
@article{MZM_2023_113_4_a6,
author = {D. V. Pyatko and V. L. Chernyshev},
title = {Asymptotics of the {Number} of {End} {Positions} of a {Random} {Walk} on a {Directed} {Hamiltonian} {Metric} {Graph}},
journal = {Matemati\v{c}eskie zametki},
pages = {560--576},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/}
}
TY - JOUR AU - D. V. Pyatko AU - V. L. Chernyshev TI - Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph JO - Matematičeskie zametki PY - 2023 SP - 560 EP - 576 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/ LA - ru ID - MZM_2023_113_4_a6 ER -
%0 Journal Article %A D. V. Pyatko %A V. L. Chernyshev %T Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph %J Matematičeskie zametki %D 2023 %P 560-576 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/ %G ru %F MZM_2023_113_4_a6
D. V. Pyatko; V. L. Chernyshev. Asymptotics of the Number of End Positions of a Random Walk on a Directed Hamiltonian Metric Graph. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 560-576. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a6/