Refinement of the Estimate for the Rate of Uniform Convergence
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 544-559.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate for the convergence rate of the Fourier series of a continuous periodic function of bounded variation is refined.
Keywords: function of bounded variation, convergence rate of the Fourier series.
@article{MZM_2023_113_4_a5,
     author = {A. Yu. Popov and T. Yu. Semenova},
     title = {Refinement of the {Estimate} for the {Rate} of {Uniform} {Convergence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {544--559},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a5/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - T. Yu. Semenova
TI  - Refinement of the Estimate for the Rate of Uniform Convergence
JO  - Matematičeskie zametki
PY  - 2023
SP  - 544
EP  - 559
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a5/
LA  - ru
ID  - MZM_2023_113_4_a5
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A T. Yu. Semenova
%T Refinement of the Estimate for the Rate of Uniform Convergence
%J Matematičeskie zametki
%D 2023
%P 544-559
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a5/
%G ru
%F MZM_2023_113_4_a5
A. Yu. Popov; T. Yu. Semenova. Refinement of the Estimate for the Rate of Uniform Convergence. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 544-559. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a5/

[1] C. Jordan, C. R. Acad. Sci., 92 (1881), 228–230

[2] R. Salem, Essais sur les séries trigonométriques, Hermann Cie, Paris, 1940 | MR

[3] C. B. Stechkin, “O priblizhenii nepreryvnykh funktsii summami Fure”, UMN, 7:4 (1952), 139–141

[4] C. A. Telyakovskii, “O rabotakh S. B. Stechkina po priblizheniyu periodicheskikh funktsii polinomami”, Fundament. i prikl. matem., 3:4 (1997), 1059–1068 | MR | Zbl

[5] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, Izd-vo LGU, L., 1982 | MR

[6] C. B. Stechkin, “Zamechanie k teoreme Dzheksona”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, 1967, 17–19 | MR | Zbl

[7] V. T. Gavrilyuk, C. B. Stechkin, “Priblizhenie nepreryvnykh periodicheskikh funktsii summami Fure”, Issledovaniya po teorii funktsii mnogikh deistvitelnykh peremennykh i priblizheniyu funktsii, Sbornik statei. Posvyaschaetsya akademiku Sergeyu Mikhailovichu Nikolskomu k ego vosmidesyatiletiyu, Tr. MIAN SSSR, 172, 1985, 107–127 | MR | Zbl

[8] I. A. Shakirov, “About the optimal replacement of the Lebesgue constant Fourier operator by a logarithmic function”, Lobachevskii J. Math., 39:6 (2018), 841–846 | DOI | MR

[9] N. K. Bari, Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR

[10] V. T. Gavrilyuk, “Priblizhenie nepreryvnykh periodicheskikh funktsii trigonometricheskimi polinomami”, Teoriya priblizheniya funktsii, 1997, 101–103