Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 529-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the uniqueness and certain qualitative properties of the solution of a class of integral equations with sum-difference kernel on the positive half-line and with a convex nonlinearity. This class of equations arises in a particular case in the dynamical theory of $p$-adic closed-open strings for the scalar field of tachyons. Such equations also play a very important role in the study of the existence and uniqueness of solutions of nonlinear integral equations in the mathematical theory of the geographical distribution of an epidemic within the framework of the Diekmann–Kaper model. We prove the uniqueness theorem for the solution of the equation under consideration for a class of nonnegative (nonzero) and bounded functions on $\mathbb{R}^+$, thereby obtaining a definitive solution of Vladimirov's open problem on the uniqueness of rolling solutions of nonlinear $p$-adic equations. Under an additional constraint on the kernel of the equation, we also prove that the solution is a concave function on $[0,+\infty)$ whose derivative belongs to the space $L_1(0,+\infty)$. At the end of the paper, we give specific model equations from the above-mentioned applications, to which our results are applied.
Keywords: convexity, successive approximations, $p$-adic string, bounded solution, nonlinearity
Mots-clés : convergence, kernel.
@article{MZM_2023_113_4_a4,
     author = {H. S. Petrosyan and Kh. A. Khachatryan},
     title = {Uniqueness of the {Solution} of a {Class} of {Integral} {Equations} with {Sum-Difference.} {Kernel} and with {Convex} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a4/}
}
TY  - JOUR
AU  - H. S. Petrosyan
AU  - Kh. A. Khachatryan
TI  - Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity
JO  - Matematičeskie zametki
PY  - 2023
SP  - 529
EP  - 543
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a4/
LA  - ru
ID  - MZM_2023_113_4_a4
ER  - 
%0 Journal Article
%A H. S. Petrosyan
%A Kh. A. Khachatryan
%T Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity
%J Matematičeskie zametki
%D 2023
%P 529-543
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a4/
%G ru
%F MZM_2023_113_4_a4
H. S. Petrosyan; Kh. A. Khachatryan. Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 529-543. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a4/

[1] I. Ya. Arefeva, B. G. Dragovic, I. V. Volovich, “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[2] V. S. Vladimirov, Ya. I. Volovich, “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, TMF, 138:3 (2004), 355–368 | DOI | MR | Zbl

[3] V. S. Vladimirov, “Ob uravnenii $p$-adicheskoi otkrytoi struny dlya skalyarnogo polya takhionov”, Izv. RAN. Ser. matem., 69:3 (2005), 55–80 | DOI | MR | Zbl

[4] O. Diekmann, “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6 (1978), 109–130 | DOI | MR

[5] O. Diekmann, “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Differential Equations, 33:1 (1979), 58–73 | DOI | MR

[6] O. Diekmann, H. G. Kaper, “On the bounded solutions of a nonlinear convolution equation”, Nonlinear Anal., 2:6 (1978), 721–737 | DOI | MR

[7] N. B. Engibaryan, “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36

[8] V. V. Sobolev, “Problema Milna dlya neodnorodnoi atmosfery”, Dokl. AN SSSR, 239:3 (1978), 558–561 | MR

[9] C. Cercignani, The Boltzmann Equation and its Applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988 | MR | Zbl

[10] A. Kh. Khachatryan, Kh. A. Khachatryan, “O razreshimosti nelineinogo modelnogo uravneniya Boltsmana v zadache ploskoi udarnoi volny”, TMF, 189:2 (2016), 239–255 | DOI | MR

[11] Kh. A. Khachatryan, A. S. Petrosyan, “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii Gammershteina–Stiltesa na vsei pryamoi”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 308, MIAN, M., 2020, 253–264 | DOI | MR

[12] V. S. Vladimirov, “O nelineinykh uravneniyakh $p$-adicheskikh otkrytykh, zamknutykh i otkryto-zamknutykh strun”, TMF, 149:3 (2006), 354–367 | DOI | MR | Zbl

[13] V. S. Vladimirov, “O resheniyakh $p$-adicheskikh strunnykh uravnenii”, TMF, 167:2 (2011), 163–170 | DOI | MR

[14] V. S. Vladimirov, “K voprosu necuschestvovaniya reshenii uravnenii $p$-adicheskikh strun”, TMF, 174:2 (2013), 208–215 | DOI | MR | Zbl

[15] L. V. Zhukovskaya, “Iteratsionnyi metod resheniya nelineinykh integralnykh uravnenii, opisyvayuschikh rollingovye resheniya v teorii strun”, TMF, 146:3 (2006), 402–409 | DOI | MR

[16] Kh. A. Khachatryan, “O razreshimosti nekotorykh klassov nelineinykh integralnykh uravnenii v teorii $p$-adicheskoi struny”, Izv. RAN. Ser. matem., 82:2 (2018), 172–193 | DOI | MR

[17] Kh. A. Khachatryan, “Suschestvovanie i edinstvennost resheniya odnoi granichnoi zadachi dlya integralnogo uravneniya svertki s monotonnoi nelineinostyu”, Izv. RAN. Ser. matem., 84:4 (2020), 198–207 | DOI

[18] Kh. A. Khachatryan, A. S. Petrosyan, “O kachestvennykh svoistvakh resheniya odnoi nelineinoi granichnoi zadachi v dinamicheskoi teorii $p$-adicheskikh strun”, Vestn. S.-Peterburg. un-ta, 16:4 (2020), 423–436 | DOI | MR

[19] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[20] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[21] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR