Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_4_a12, author = {I. V. Romanov and A. S. Shamaev}, title = {Controllability to {Rest} for the {``Plate} {Oscillation''} {Equation} on the {Torus} in the {Case} of {Local} {Force} {Action}}, journal = {Matemati\v{c}eskie zametki}, pages = {618--621}, publisher = {mathdoc}, volume = {113}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a12/} }
TY - JOUR AU - I. V. Romanov AU - A. S. Shamaev TI - Controllability to Rest for the ``Plate Oscillation'' Equation on the Torus in the Case of Local Force Action JO - Matematičeskie zametki PY - 2023 SP - 618 EP - 621 VL - 113 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a12/ LA - ru ID - MZM_2023_113_4_a12 ER -
%0 Journal Article %A I. V. Romanov %A A. S. Shamaev %T Controllability to Rest for the ``Plate Oscillation'' Equation on the Torus in the Case of Local Force Action %J Matematičeskie zametki %D 2023 %P 618-621 %V 113 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a12/ %G ru %F MZM_2023_113_4_a12
I. V. Romanov; A. S. Shamaev. Controllability to Rest for the ``Plate Oscillation'' Equation on the Torus in the Case of Local Force Action. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 618-621. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a12/
[1] S. Jaffard, Portugal. Math., 47:4 (1990), 423–429 | MR
[2] F. W. Chaves-Silva, L. Rosier, E. Zuazua, J. Math. Pures Appl. (9), 101:2 (2014), 198–222 | DOI | MR | Zbl
[3] J. L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, v. 1, Masson, Paris, 1988 | MR
[4] L. Rosier, B.-Y. Zhang, Math. Models Methods Appl. Sci., 20:12 (2010), 2293–2347 | MR
[5] M. S. Agranovich, Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013 | MR