Spectral Test for Exponential Stability
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 489-498
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the theory of commutative Banach algebras, we find
an estimate of the solution of a higher-order linear differential equation; from this estimate, we derive
a Lyapunov asymptotic stability test for this equation.
Here the results by Faedo and Kharitonov on the Hurwitz conditions
for families of polynomials find a natural application.
Similar statements are obtained
for a system of linear differential equations.
Keywords:
commutative Banach algebras, differential equations
in Banach algebras, Lyapunov stability.
@article{MZM_2023_113_4_a1,
author = {I. D. Kostrub and A. I. Perov},
title = {Spectral {Test} for {Exponential} {Stability}},
journal = {Matemati\v{c}eskie zametki},
pages = {489--498},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/}
}
I. D. Kostrub; A. I. Perov. Spectral Test for Exponential Stability. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 489-498. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/