Spectral Test for Exponential Stability
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 489-498

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the theory of commutative Banach algebras, we find an estimate of the solution of a higher-order linear differential equation; from this estimate, we derive a Lyapunov asymptotic stability test for this equation. Here the results by Faedo and Kharitonov on the Hurwitz conditions for families of polynomials find a natural application. Similar statements are obtained for a system of linear differential equations.
Keywords: commutative Banach algebras, differential equations in Banach algebras, Lyapunov stability.
@article{MZM_2023_113_4_a1,
     author = {I. D. Kostrub and A. I. Perov},
     title = {Spectral {Test} for {Exponential} {Stability}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {489--498},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/}
}
TY  - JOUR
AU  - I. D. Kostrub
AU  - A. I. Perov
TI  - Spectral Test for Exponential Stability
JO  - Matematičeskie zametki
PY  - 2023
SP  - 489
EP  - 498
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/
LA  - ru
ID  - MZM_2023_113_4_a1
ER  - 
%0 Journal Article
%A I. D. Kostrub
%A A. I. Perov
%T Spectral Test for Exponential Stability
%J Matematičeskie zametki
%D 2023
%P 489-498
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/
%G ru
%F MZM_2023_113_4_a1
I. D. Kostrub; A. I. Perov. Spectral Test for Exponential Stability. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 489-498. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a1/