Weak Convergence of a Greedy Algorithm and the WN-Property
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the weak convergence of a greedy algorithm of approximation by a given set in a Banach space. It is proved that the greedy algorithm of approximation by a strongly norm-reducing set in a uniformly smooth Banach space with the WN-property weakly converges. In an arbitrary separable Banach space without the WN-property, we construct an example of a strongly norm-reducing set such that the greedy algorithm of approximation by this set does not weakly converge for some initial element. Bibliography: 6 titles.
Keywords: greedy approximations, Banach space, weak convergence, WN-property.
@article{MZM_2023_113_4_a0,
     author = {P. A. Borodin},
     title = {Weak {Convergence} of a {Greedy} {Algorithm} and the {WN-Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--488},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Weak Convergence of a Greedy Algorithm and the WN-Property
JO  - Matematičeskie zametki
PY  - 2023
SP  - 483
EP  - 488
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/
LA  - ru
ID  - MZM_2023_113_4_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Weak Convergence of a Greedy Algorithm and the WN-Property
%J Matematičeskie zametki
%D 2023
%P 483-488
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/
%G ru
%F MZM_2023_113_4_a0
P. A. Borodin. Weak Convergence of a Greedy Algorithm and the WN-Property. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/

[1] S. J. Dilworth, D. Kutzarova, K. L. Shuman, V. N. Temlyakov, P. Wojtaszczyk, “Weak convergence of greedy algorithms in Banach spaces”, J. Fourier Anal. Appl., 14:5–6 (2008), 609–628 | DOI | MR

[2] V. Temlyakov, Greedy Approximation, Cambridge Univ. Press, Cambridge, 2011 | MR

[3] V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[4] V. N. Temlyakov, “Greedy approximation in Banach spaces”, Banach Spaces and Their Applications in Analysis, de Gruyter, Berlin, 2007, 193–208 | MR

[5] E. D. Livshits, “O skhodimosti gridi-algoritmov v banakhovykh prostranstvakh”, Matem. zametki, 73:3 (2003), 371–389 | DOI | MR | Zbl

[6] P. A. Borodin, “Zhadnye priblizheniya proizvolnym mnozhestvom”, Izv. RAN. Ser. matem., 84:2 (2020), 43–59 | DOI | MR

[7] Dzh. Distel, Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980

[8] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, RKhD, M.–Izhevsk, 2020 | MR