Weak Convergence of a Greedy Algorithm and the WN-Property
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the weak convergence of a greedy algorithm of approximation by a given set
in a Banach space.
It is proved that
the greedy algorithm of approximation by a strongly norm-reducing set
in a uniformly smooth Banach space with the WN-property weakly converges.
In an arbitrary separable Banach space without the WN-property,
we construct an example of a strongly norm-reducing set such that
the greedy algorithm of approximation by this set
does not weakly converge for some initial element.
Bibliography: 6 titles.
Keywords:
greedy approximations, Banach space, weak convergence, WN-property.
@article{MZM_2023_113_4_a0,
author = {P. A. Borodin},
title = {Weak {Convergence} of a {Greedy} {Algorithm} and the {WN-Property}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--488},
publisher = {mathdoc},
volume = {113},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/}
}
P. A. Borodin. Weak Convergence of a Greedy Algorithm and the WN-Property. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/