Weak Convergence of a Greedy Algorithm and the WN-Property
Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the weak convergence of a greedy algorithm of approximation by a given set in a Banach space. It is proved that the greedy algorithm of approximation by a strongly norm-reducing set in a uniformly smooth Banach space with the WN-property weakly converges. In an arbitrary separable Banach space without the WN-property, we construct an example of a strongly norm-reducing set such that the greedy algorithm of approximation by this set does not weakly converge for some initial element. Bibliography: 6 titles.
Keywords: greedy approximations, Banach space, weak convergence, WN-property.
@article{MZM_2023_113_4_a0,
     author = {P. A. Borodin},
     title = {Weak {Convergence} of a {Greedy} {Algorithm} and the {WN-Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--488},
     publisher = {mathdoc},
     volume = {113},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/}
}
TY  - JOUR
AU  - P. A. Borodin
TI  - Weak Convergence of a Greedy Algorithm and the WN-Property
JO  - Matematičeskie zametki
PY  - 2023
SP  - 483
EP  - 488
VL  - 113
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/
LA  - ru
ID  - MZM_2023_113_4_a0
ER  - 
%0 Journal Article
%A P. A. Borodin
%T Weak Convergence of a Greedy Algorithm and the WN-Property
%J Matematičeskie zametki
%D 2023
%P 483-488
%V 113
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/
%G ru
%F MZM_2023_113_4_a0
P. A. Borodin. Weak Convergence of a Greedy Algorithm and the WN-Property. Matematičeskie zametki, Tome 113 (2023) no. 4, pp. 483-488. http://geodesic.mathdoc.fr/item/MZM_2023_113_4_a0/