Frobenius Relations for Associative~Lie~Nilpotent Algebras
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 417-422

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any relatively free associative Lie nilpotent algebra of a class $l$ over a field of finite characteristic $p$ satisfies the additive Frobenius relation $(a+b)^{p^s}=a^{p^s}+b^{p^s}$ if and only if $l\le p^s-p^{s-1}+1$. It is also proved that, under the above conditions on the Lie class of nilpotency, the multiplicative Frobenius relation $(a\cdot b)^{p^s}=a^{p^s}\cdot b^{p^s}$ holds.
Mots-clés : Frobenius relations
Keywords: Lie nilpotent algebra.
@article{MZM_2023_113_3_a7,
     author = {S. V. Pchelintsev},
     title = {Frobenius {Relations} for {Associative~Lie~Nilpotent} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--422},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Frobenius Relations for Associative~Lie~Nilpotent Algebras
JO  - Matematičeskie zametki
PY  - 2023
SP  - 417
EP  - 422
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/
LA  - ru
ID  - MZM_2023_113_3_a7
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Frobenius Relations for Associative~Lie~Nilpotent Algebras
%J Matematičeskie zametki
%D 2023
%P 417-422
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/
%G ru
%F MZM_2023_113_3_a7
S. V. Pchelintsev. Frobenius Relations for Associative~Lie~Nilpotent Algebras. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 417-422. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/