Frobenius Relations for Associative~Lie~Nilpotent Algebras
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 417-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any relatively free associative Lie nilpotent algebra of a class $l$ over a field of finite characteristic $p$ satisfies the additive Frobenius relation $(a+b)^{p^s}=a^{p^s}+b^{p^s}$ if and only if $l\le p^s-p^{s-1}+1$. It is also proved that, under the above conditions on the Lie class of nilpotency, the multiplicative Frobenius relation $(a\cdot b)^{p^s}=a^{p^s}\cdot b^{p^s}$ holds.
Mots-clés : Frobenius relations
Keywords: Lie nilpotent algebra.
@article{MZM_2023_113_3_a7,
     author = {S. V. Pchelintsev},
     title = {Frobenius {Relations} for {Associative~Lie~Nilpotent} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--422},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Frobenius Relations for Associative~Lie~Nilpotent Algebras
JO  - Matematičeskie zametki
PY  - 2023
SP  - 417
EP  - 422
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/
LA  - ru
ID  - MZM_2023_113_3_a7
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Frobenius Relations for Associative~Lie~Nilpotent Algebras
%J Matematičeskie zametki
%D 2023
%P 417-422
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/
%G ru
%F MZM_2023_113_3_a7
S. V. Pchelintsev. Frobenius Relations for Associative~Lie~Nilpotent Algebras. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 417-422. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a7/

[1] S. A. Jennings, “On rings whose associated Lie rings are nilpotent”, Bull. Amer. Math. Soc., 53:6 (1947), 593–597 | DOI | MR

[2] V. N. Latyshev, “O vybore bazy v odnom $T$-ideale”, Sib. matem. zhurn., 4:5 (1963), 1122–1127 | MR | Zbl

[3] N. Jacobson, Lie Algebras, Interscience, New York–London, 1962 | MR

[4] A. V. Grishin, L. M. Tsybulya, A. A. Shokola, “O $T$-prostranstvakh i sootnosheniyakh v otnositelno svobodnykh lievski nilpotentnykh assotsiativnykh algebrakh”, Fundament. i prikl. matem., 16:3 (2010), 135–148 | MR

[5] S. V. Pchelintsev, “Otnositelno svobodnye assotsiativnye Li nilpotentnye algebry ranga $3$”, Sib. elektron. matem. izv., 16 (2019), 1937–1946 | DOI

[6] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR