Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 360-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the $(k,1)$-generalized Fourier transform on the real line $\mathbb{R}$, the Riesz transform is determined. For this transform, $L^p$-inequalities with power and piecewise power weights are proved for $1$.
Keywords: weight function, generalized Fourier transform, Riesz transform.
@article{MZM_2023_113_3_a3,
     author = {V. I. Ivanov},
     title = {Riesz {Transform} for the {One-Dimensional} $(k,1)${-Generalized} {Fourier} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {360--373},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a3/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform
JO  - Matematičeskie zametki
PY  - 2023
SP  - 360
EP  - 373
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a3/
LA  - ru
ID  - MZM_2023_113_3_a3
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform
%J Matematičeskie zametki
%D 2023
%P 360-373
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a3/
%G ru
%F MZM_2023_113_3_a3
V. I. Ivanov. Riesz Transform for the One-Dimensional $(k,1)$-Generalized Fourier Transform. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 360-373. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a3/

[1] Ch. F. Dunkl, “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[2] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer, Berlin, 2002, 93–135 | DOI | MR

[3] R. Howe, The Oscillator Semigroup (Durham, NC, 1987), Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988 | MR

[4] S. Ben Saïd, T. Kobayashi, B. Ørsted, “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR

[5] T. Kobayashi, G.Mano, The Schrödinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p;q)$, Mem. Amer. Math. Soc., 212, Amer. Math. Soc., Providence, 2011 | MR

[6] S. Tangavelu, Y. Xu, “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199:1 (2007), 181–195 | DOI | MR

[7] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Riesz potential and maximal function for Dunkl transform”, Potential Anal., 55:4 (2021), 513–538 | DOI | MR | Zbl

[8] D. V. Gorbachev, V. I. Ivanov, “Vesovye neravenstva dlya potentsiala Danklya–Rissa”, Chebyshevskii sb., 20:1 (2019), 131–147 | MR | Zbl

[9] B. Amri, M. Sifi, “Riesz transforms for Dunkl transform”, Ann. Math. Blaise Pascal, 19:1 (2012), 247–262 | MR

[10] V. Ivanov, “Vesovye neravenstva dlya preobrazovanii Danklya–Rissa i gradienta Danklya”, Chebyshevskii sb., 21:4 (2020), 97–106 | DOI | Zbl

[11] V. I. Ivanov, “Neravenstva dlya preobrazovanii Danklya–Rissa i gradienta Danklya s radialnymi kusochno-stepennymi vesami”, Chebyshevskii sb., 22:3 (2021), 122–132 | DOI

[12] M. Riesz, “Sur les fonctions conjuguées”, Math. Z., 27:1 (1928), 218–244 | DOI | MR

[13] G. H. Hardy, J. E. Littlewood, “Some more theorems concerning Fourier series and Fourier power series”, Duke Math. J., 2:2 (1936), 354–382 | DOI | MR

[14] K. I. Babenko, “O sopryazhennykh funktsiyakh”, Dokl. AN SSSR, 62 (1948), 157–160 | MR

[15] R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251 | DOI | MR

[16] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, On the Kernel of $(\kappa,a)$-generalized Fourier Transform, arXiv: 2210.15730 | DOI

[17] D. V. Gorbachev, V. I. Ivanov, S. Yu. Tikhonov, “Pitt's inequalities and uncertainty principle for generalized Fourier transform”, Int. Math. Res. Not. IMRN, 23 (2016), 7179–7200 | DOI | MR

[18] G. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949

[19] G. Beitmen, A. Erdeii, Tablitsy integralnykh preobrazovanii. T. 2. Preobrazovaniya Besselya. Integraly., Nauka, M., 1970 | MR

[20] E. M. Stein, “Note on singular integrals”, Proc. Amer. Math. Soc., 8:2 (1957), 250–254 | DOI | MR