On the Dimension of the Space of Weakly Additive Functionals
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 347-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Important demanded properties of weakly additive order-preserving normalized functionals are established. Various interpretations of a weakly additive order-preserving normalized functional are given. The continuity of such a functional as a function depending on a set in a given compact space is proved. Based on these results, an example is constructed showing that the space $O(X)$ of weakly additive order-preserving normalized functionals is not embedded in any space of finite (or even countable) algebraic dimension, provided that the compact space $X$ contains more than one point.
Keywords: space of weakly additive functionals, functor of weakly additive functionals
Mots-clés : dimension.
@article{MZM_2023_113_3_a2,
     author = {R. E. Jiemuratov},
     title = {On the {Dimension} of the {Space} of {Weakly} {Additive} {Functionals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {347--359},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a2/}
}
TY  - JOUR
AU  - R. E. Jiemuratov
TI  - On the Dimension of the Space of Weakly Additive Functionals
JO  - Matematičeskie zametki
PY  - 2023
SP  - 347
EP  - 359
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a2/
LA  - ru
ID  - MZM_2023_113_3_a2
ER  - 
%0 Journal Article
%A R. E. Jiemuratov
%T On the Dimension of the Space of Weakly Additive Functionals
%J Matematičeskie zametki
%D 2023
%P 347-359
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a2/
%G ru
%F MZM_2023_113_3_a2
R. E. Jiemuratov. On the Dimension of the Space of Weakly Additive Functionals. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 347-359. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a2/

[1] Kh. F. Kholturayev, “Geometrical properties of the space of idempotent probability measures”, Appl. Gen. Topol., 22:2 (2021), 399–415 | DOI | MR

[2] A. A. Zaitov, “On a metric on the space of idempotent probability measures”, Appl. Gen. Topol., 21:1 (2020), 35–51 | DOI | MR

[3] A. A. Zaitov, A. Ya. Ishmetov, “Gomotopicheskie svoistva prostranstva $I_{f}(X)$ idempotentnykh veroyatnostnykh mer”, Matem. zametki, 106:4 (2019), 531–542 | DOI | MR

[4] V. N. Kolokoltsov, “Idempotentnye struktury v optimizatsii (Moskva, 31 avgusta – 6 sentyabrya 1998 g.). T. 4. Optimalnoe upravlenie”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 65, VINITI, M., 1999, 118–174 | MR

[5] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya. I”, Funkts. analiz i ego pril., 23:1 (1989), 1–14 | MR

[6] V. N. Kolokoltsov, V. P. Maslov, “Idempotentnyi analiz kak apparat teorii upravleniya i optimalnogo sinteza. 2”, Funkts. analiz i ego pril., 23:4 (1989), 53–62 | MR

[7] G. L. Litvinov, V. P. Maslov, G. B. Shpiz, “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Matem. zametki, 69:5 (2001), 758–797 | DOI | MR

[8] A. A. Zaitov, “Geometricheskie i topologicheskie svoistva podprostranstva $P_{f}(X)$ veroyatnostnykh mer”, Izv. vuzov. Matem., 2019, no. 10, 28–37 | DOI

[9] S. Albeverio, Sh. A. Ayupov, A. A. Zaitov, “On certain properties of the spaces of order-preserving functionals”, Topology Appl., 155:16 (2008), 1792–1799 | DOI | MR

[10] T. N. Radul, “On the functor of order-preserving functionals”, Comment. Math. Univ. Carolin., 39:3 (1998), 609–615 | MR

[11] T. N. Radul, “Topology of the spaces of order-preserving functionals”, Bull. Polish Acad. Sci. Math., 47:1 (1999), 53–60 | MR

[12] A. A. Zaitov, “Order-preserving variants of the basic principles of functional analysis”, Fund. J. of Math. and Appl., 2:1 (2019), 10–17 | DOI

[13] A. A. Zaitov, “O funktore slabo additivnykh $\tau$-gladkikh funktsionalov”, Geometriya i topologiya, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 197, VINITI RAN, M., 2021, 36–45 | DOI

[14] R. E. Zhiemuratov, A. A. Zaitov, “O veschestvennoi polnote prostranstva slabo additivnykh $\sigma$-gladkikh funktsionalov”, Vladikavk. matem. zhurn., 11:1 (2009), 22–28 | MR

[15] A. A. Zaitov, “The functor of order-preserving functionals of finite degree”, J. Math. Sci. (N.Y.), 133:5 (2006), 1602–1603 | DOI | MR

[16] A. A. Zaitov, “Open mapping theorem for order-preserving positive-homogeneity functionals”, Math. Notes, 88:5–6 (2010), 21–26

[17] A. A. Zaitov, “On categorical properties of the functor of order-preserving functionals. (English summary) Methods Funct. Anal. Topology 9 (2003), no. 4, 357-364.”, Methods Funct. Anal. Topology, 9:4 (2003), 357–364 | MR

[18] Sh. A. Ayupov, A. A. Zaitov, “Functor of order-preserving $\tau$-smooth functionals and maps”, Ukrainian Math. J., 61:9 (2009), 1380–1386 | DOI | MR

[19] A. A. Zaitov, “On monad of order-preserving functionals”, Methods Funct. Anal. Topology, 11:3 (2005), 306–308 | MR

[20] A. A. Zaitov, “Some categorical properties of the functors $O_\tau$ and $O_R$ of weakly additive functionals”, Math. Notes, 79:5–6 (2006), 632–642 | DOI | MR

[21] A. A. Zaitov, “On dimension of the space of monetary risk measures”, National University of Uzbekistan, Samarkand State University, Holon Institute of Technology Joint conference “STEMM: Science+Technology+Education+Mathematics+Medicine”, 2019