On a Class of Functionals Feynman Integrable in the Sense of Analytic Continuation
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 472-476
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Feynman integral, Wiener measure.
@article{MZM_2023_113_3_a14,
author = {E. S. Kolpakov},
title = {On a {Class} of {Functionals} {Feynman} {Integrable} in the {Sense} of {Analytic} {Continuation}},
journal = {Matemati\v{c}eskie zametki},
pages = {472--476},
year = {2023},
volume = {113},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a14/}
}
E. S. Kolpakov. On a Class of Functionals Feynman Integrable in the Sense of Analytic Continuation. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 472-476. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a14/
[1] V. V. Belokurov, E. T. Shavgulidze, Paths With Singularities in Functional Integrals of Quantum Field Theory, , 2013 https://arxiv.org/abs/1112.3899
[2] V. V. Belokurov, E. T. Shavgulidze, J. Math. Sci. (N.Y.), 248:5 (2020), 544–552 | MR
[3] V. V. Belokurov, E. T. Shavgulidze, Chebyshevskii sb., 21:2 (2020), 37–42 | DOI | MR
[4] D. V. Grishin, Ya. Yu. Pavlovskii, Izv. RAN. Ser. matem., 85:1 (2021), 27–65 | DOI | MR
[5] A. A. Fedotov, Matem. zametki, 109:6 (2021), 948–953 | DOI
[6] E. S. Kolpakov, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2021, no. 4, 41–43 | MR | Zbl
[7] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Nauka, M., 2015 | MR
[8] E. S. Kolpakov, Tr. MFTI, 2021, no. 2, 130–134