Counterexamples to the Hardy--Littlewood Theorem for Generalized Monotone Sequences
Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 466-471.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Fourier series, Hardy–Littlewood theorem, generalized monotone sequences.
@article{MZM_2023_113_3_a13,
     author = {M. I. Dyachenko and K. A. Oganesyan},
     title = {Counterexamples to the {Hardy--Littlewood} {Theorem} for {Generalized} {Monotone} {Sequences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {466--471},
     publisher = {mathdoc},
     volume = {113},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a13/}
}
TY  - JOUR
AU  - M. I. Dyachenko
AU  - K. A. Oganesyan
TI  - Counterexamples to the Hardy--Littlewood Theorem for Generalized Monotone Sequences
JO  - Matematičeskie zametki
PY  - 2023
SP  - 466
EP  - 471
VL  - 113
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a13/
LA  - ru
ID  - MZM_2023_113_3_a13
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%A K. A. Oganesyan
%T Counterexamples to the Hardy--Littlewood Theorem for Generalized Monotone Sequences
%J Matematičeskie zametki
%D 2023
%P 466-471
%V 113
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a13/
%G ru
%F MZM_2023_113_3_a13
M. I. Dyachenko; K. A. Oganesyan. Counterexamples to the Hardy--Littlewood Theorem for Generalized Monotone Sequences. Matematičeskie zametki, Tome 113 (2023) no. 3, pp. 466-471. http://geodesic.mathdoc.fr/item/MZM_2023_113_3_a13/

[1] E. D. Alferova, A. Yu. Popov, Matem. zametki, 110:4 (2021), 630–634 | DOI

[2] A. Yu. Popov, Matem. zametki, 109:5 (2021), 768–780 | DOI

[3] A. Yu. Popov, A. P. Solodov, Matem. zametki, 112:2 (2022), 317–320 | DOI

[4] G. H. Hardy, J. E. Littlewood, J. London Math. Soc., 6:1 (1931), 3–9 | DOI | MR

[5] R. E. A. C. Paley, Studia Math., 3 (1931), 226–238

[6] R. Kh. Akylzhanov, E. D. Nursultanov, M. V. Ruzhanskii, Matem. zametki, 100:2 (2016), 287–290 | DOI | MR

[7] M. Dyachenko, A. Mukanov, S. Tikhonov, Studia Math., 250:3 (2020), 217–234 | DOI | MR

[8] S. S. Volosivets, Matem. zametki, 102:3 (2017), 339–354 | DOI | MR

[9] M. I. Dyachenko, Anal. Math., 16:3 (1990), 173–190 | DOI | MR

[10] M. I. Dyachenko, Matem. sb., 184:3 (1993), 3–20 | MR

[11] M. I. Dyachenko, E. D. Nursultanov, M. E. Nursultanov, Matem. zametki, 99:4 (2016), 502–510 | DOI | MR

[12] F. Moricz, Proc. Amer. Math. Soc., 109:2 (1990), 417–425 | DOI | MR

[13] M. Dyachenko, S. Tikhonov, J. Math. Anal. Appl., 339:1 (2008), 503–510 | DOI | MR

[14] M. Dyachenko, S. Tikhonov, Topics in Classical Analysis and Applications in Honor of Daniel Waterman, World Sci. Publ., Hackensack, NJ, 2008, 88–101 | MR

[15] V. A. Yudin, Dis. $\dots$ dokt. fiz.-matem. nauk, MIAN, M., 1991

[16] V. A. Yudin, Teoriya pribl. funktsii (Trudy mezhd. konf., Kiev, 1983), M., 1987, 477–480

[17] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR