Harmonicity of Slant Conformal Riemannian Maps
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 236-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish conditions for slant conformal Riemannian maps to be horizontally homothetic Riemannian maps. We also discuss the geometry of totally geodesic slant conformal Riemannian maps. Finally, we study the harmonicity of slant conformal Riemannian maps.
Keywords: conformal Riemannian maps, slant conformal Riemannian maps, horizontally homothetic Riemannian maps, Kaehler manifolds, harmonic maps.
@article{MZM_2023_113_2_a6,
     author = {R. Kaushal and R. Kumar and R. Rani},
     title = {Harmonicity of {Slant} {Conformal} {Riemannian} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {236--250},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a6/}
}
TY  - JOUR
AU  - R. Kaushal
AU  - R. Kumar
AU  - R. Rani
TI  - Harmonicity of Slant Conformal Riemannian Maps
JO  - Matematičeskie zametki
PY  - 2023
SP  - 236
EP  - 250
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a6/
LA  - ru
ID  - MZM_2023_113_2_a6
ER  - 
%0 Journal Article
%A R. Kaushal
%A R. Kumar
%A R. Rani
%T Harmonicity of Slant Conformal Riemannian Maps
%J Matematičeskie zametki
%D 2023
%P 236-250
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a6/
%G ru
%F MZM_2023_113_2_a6
R. Kaushal; R. Kumar; R. Rani. Harmonicity of Slant Conformal Riemannian Maps. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 236-250. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a6/

[1] A. E. Fischer, “Riemannian maps between Riemannian manifolds”, Mathematical Aspects of Classical Field Theory, Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992, 331–366 | MR

[2] B. Şahin, “Conformal Riemannian maps between Riemannian manifolds, their harmonicity and decomposition theorems”, Acta Appl. Math., 109:3 (2010), 829–847 | DOI | MR

[3] E. Garcia-Rio, D. N. Kupeli, Semi-Riemannian Maps and Their Applications, Kluwer Academic, Dortrecht, 1999 | MR

[4] B. Şahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry and Their Applications, Academic Press, London, 2017 | MR

[5] B. Şahin, “Slant Riemannian maps from almost Hermitian manifolds”, Quaest. Math., 36:3 (2013), 449–461 | DOI | MR

[6] B. Şahin, S. Yanan, “Conformal Riemannian maps from almost Hermitian manifolds”, Turkish J. Math., 42:5 (2018), 2436–2451 | DOI | MR

[7] R. Kaushal, R. Kumar, R. K. Nagaich, “Lightlike submersions from totally umbilical semi-transversal lightlike submanifolds”, Miskolc Math. Notes., 19:2 (2018), 953–968 | DOI | MR

[8] R. Sachdeva, R. Kaushal, G. Gupta, R. Kumar, “Conformal slant submersions from nearly Kaehler manifolds”, Int. J. Geom. Methods Mod. Phys., 18:6 (2021), Article Id. 2150088 | MR

[9] M. A. Akyol, B. Şahin, “Conformal slant Riemannian maps to Kaehler manifolds”, Tokyo J. Math., 42:1 (2019), 225–237 | DOI | MR

[10] M. A. Akyol, B. Şahin, “Conformal slant submersions”, Hacet. J. Math. Stat., 48:1 (2019), 28–44 | MR

[11] B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990 | MR

[12] Y. Ohnita, “On pluriharmonicity of stable harmonic maps”, J. London Math. Soc. (2), 35:3 (1987), 563–568 | DOI | MR

[13] J. Eells, J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., 86:1 (1964), 109–160 | DOI | MR