Instability of Equilibria in a Solenoidal Force Field
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 207-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the conjecture that an isolated equilibrium of a mechanical system in a solenoidal force field is unstable. A number of statements confirming this conjecture under additional general position conditions guaranteeing that the equilibrium is isolated are proved. More precisely, we prove that there exist phase trajectories asymptotically leaving the equilibrium state.
Keywords: solenoidal field, equilibrium, asymptotic solution, quasihomogeneous system.
Mots-clés : covariant divergence
@article{MZM_2023_113_2_a4,
     author = {V. V. Kozlov},
     title = {Instability of {Equilibria} in a {Solenoidal} {Force} {Field}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--216},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a4/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Instability of Equilibria in a Solenoidal Force Field
JO  - Matematičeskie zametki
PY  - 2023
SP  - 207
EP  - 216
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a4/
LA  - ru
ID  - MZM_2023_113_2_a4
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Instability of Equilibria in a Solenoidal Force Field
%J Matematičeskie zametki
%D 2023
%P 207-216
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a4/
%G ru
%F MZM_2023_113_2_a4
V. V. Kozlov. Instability of Equilibria in a Solenoidal Force Field. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 207-216. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a4/

[1] V. P. Palamodov, “Ob obraschenii teoremy Lagranzha–Dirikhle i neustoichivosti konservativnykh sistem”, UMN, 75:3(453) (2020), 107–122 | DOI | MR

[2] V. V. Kozlov, “Asimptoticheskie resheniya uravnenii klassicheskoi mekhaniki”, PMM, 46:4 (1982), 573–577 | MR

[3] V. V. Kozlov, V. P. Palamodov, “Ob asimptoticheskikh resheniyakh uravnenii klassicheskoi mekhaniki”, Dokl. AN SSSR, 263:2 (1982), 285–289 | MR | Zbl

[4] V. V. Kozlov, “Ob integriruemosti uravnenii dinamiki v nepotentsialnom silovom pole”, UMN, 77:6 (2022), 137–158

[5] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, M., MTsNMO, 2005

[6] A. A. Mailybaev, A. P. Seiranyan, Mnogoparametricheskie zadachi ustoichivosti. Teoriya i prilozheniya v mekhanike, M., Fizmatlit, 2009

[7] O. N. Kirillov, Nonconservative Stability Problems of Modern Physics, Berlin, Walter de Gruyter, 2013 | MR

[8] V. V. Kozlov, D. V. Treschev, “Instability, asymptotic trajectories and dimension of the phase space”, Mosc. Math. J., 18:4 (2018), 681–692 | DOI | MR

[9] V. V. Kozlov, S. D. Furta, Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, M.–Izhevsk, NITs “Regulyarnaya i khaoticheskaya dinamika”, 2009

[10] A. M. Lyapunov, “Issledovanie odnogo iz osobennykh sluchaev zadachi ob ustoichivosti dvizheniya”, Matem. sb., 17:2 (1893), 253–333 | Zbl

[11] V. A. Vuiichich, V. V. Kozlov, “Ob ustoichivosti ravnovesiya v nepotentsialnom silovom pole”, Teor. Primen. Meh., 15 (1989), 139–145 | MR

[12] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[13] M. Brunella, “Instability of equilibria in dimension three”, Ann. Inst. Fourier (Grenoble), 48:5 (1998), 1345–1357 | DOI | MR

[14] V. V. Kozlov, “Pervye integraly i asimptoticheskie traektorii”, Matem. sb., 211:1 (2020), 32–59 | DOI | MR