On a Conjecture of Bourgain
Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 308-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: convex body, inertia tensor, isotropic state
Mots-clés : Bourgain's conjecture.
@article{MZM_2023_113_2_a12,
     author = {V. A. Zorich},
     title = {On a {Conjecture} of {Bourgain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {308--310},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a12/}
}
TY  - JOUR
AU  - V. A. Zorich
TI  - On a Conjecture of Bourgain
JO  - Matematičeskie zametki
PY  - 2023
SP  - 308
EP  - 310
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a12/
LA  - ru
ID  - MZM_2023_113_2_a12
ER  - 
%0 Journal Article
%A V. A. Zorich
%T On a Conjecture of Bourgain
%J Matematičeskie zametki
%D 2023
%P 308-310
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a12/
%G ru
%F MZM_2023_113_2_a12
V. A. Zorich. On a Conjecture of Bourgain. Matematičeskie zametki, Tome 113 (2023) no. 2, pp. 308-310. http://geodesic.mathdoc.fr/item/MZM_2023_113_2_a12/

[1] V. Milman, Geometry and Dynamics of Groups and Spaces, Progr. Math., 265, Birkhäuser, Basel, 2007, 647–667 | DOI | MR

[2] B. Klartag, Geom. Funct. Anal., 16:6 (2006), 1274–1290 | DOI | MR

[3] V. A. Zorich, J. Math. Sci. (N.Y.), 259:1 (2021), 104–107 | DOI | MR

[4] K. Ball, Flavors of Geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge, 1997, 1–58 | MR

[5] L. D. Landau, E. M. Lifshits, Kratkii kurs teoreticheskoi fiziki. Kn. 1. Mekhanika. Elektrodinamika, Nauka, M., 1969 | MR