Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 118-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the optimal recovery of solutions of the heat equation on the torus $\mathbb T$ from a finite set of inaccurate Fourier coefficients of the initial temperature. In addition, accuracy conditions on subspaces of trigonometric polynomials of fixed degree are imposed on these methods.
Keywords: optimal recovery, heat equation, trigonometric polynomials.
Mots-clés : Fourier transform
@article{MZM_2023_113_1_a9,
     author = {S. A. Unuchek},
     title = {Optimal {Recovery} {Methods} {Exact} on {Trigonometric} {Polynomials} for the {Solution} of the {Heat} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {118--131},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/}
}
TY  - JOUR
AU  - S. A. Unuchek
TI  - Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation
JO  - Matematičeskie zametki
PY  - 2023
SP  - 118
EP  - 131
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/
LA  - ru
ID  - MZM_2023_113_1_a9
ER  - 
%0 Journal Article
%A S. A. Unuchek
%T Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation
%J Matematičeskie zametki
%D 2023
%P 118-131
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/
%G ru
%F MZM_2023_113_1_a9
S. A. Unuchek. Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 118-131. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/

[1] A. N. Kolmogorov, “O nailuchshem priblizhenii funktsii zadannogo funktsionalnogo klassa”, Izbrannye trudy, T. 1, Nauka, M., 2005, 209–212

[2] C. A. Micchelli, T. J. Rivlin, “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, Plenum Press, New York, 1977, 1–54 | MR

[3] J. F. Traub, H. Woźniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980 | MR

[4] V. V. Arestov, “Nailuchshee vosstanovlenie operatorov i rodstvennye zadachi”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 189, Nauka, M., 1989, 3–20 | MR

[5] L. Plaskota, Noisy Information and Computational Complexity, Cambridge Univ. Press, Cambridge, 1996 | MR

[6] K. Yu. Osipenko, Optimal Recovery of Analytic Functions, Nova Science Publ., New York, 2000

[7] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, URSS, M., 2020

[8] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Tochnost i optimalnost metodov vosstanovleniya funktsii po ikh spektru”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Trudy MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 201–216 | DOI | MR

[9] E. V. Balova, K. Yu. Osipenko, “Optimalnye metody vosstanovleniya reshenii zadachi Dirikhle, tochnye na podprostranstvakh sfericheskikh garmonik”, Matem. zametki, 104:6 (2018), 803–811 | DOI | MR

[10] K. Yu. Osipenko, “Optimalnoe vosstanovlenie lineinykh operatorov v neevklidovykh metrikakh”, Matem. sb., 205:10 (2014), 77–106 | DOI | MR | Zbl

[11] E. V. Vvedenskaya, “Ob optimalnom vosstanovlenii resheniya uravneniya teploprovodnosti po netochno zadannoi temperature v razlichnye momenty vremeni”, Vladikavk. matem. zhurn., 8:1 (2006), 16–21 | MR

[12] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Optimalnoe vosstanovlenie resheniya uravneniya teploprovodnosti po netochnym izmereniyam”, Matem. sb., 200:5 (2009), 37–54 | DOI | MR | Zbl

[13] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Ob optimalnom vosstanovlenii reshenii raznostnykh uravnenii po netochnym izmereniyam”, Problemy matem. analiza, 69 (2013), 47–54 | MR