Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 118-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of the optimal recovery of solutions of the heat equation on the torus $\mathbb T$ from a finite set of inaccurate Fourier coefficients of the initial temperature. In addition, accuracy conditions on subspaces of trigonometric polynomials of fixed degree are imposed on these methods.
Keywords:
optimal recovery, heat equation, trigonometric polynomials.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{MZM_2023_113_1_a9,
author = {S. A. Unuchek},
title = {Optimal {Recovery} {Methods} {Exact} on {Trigonometric} {Polynomials} for the {Solution} of the {Heat} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {118--131},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/}
}
TY - JOUR AU - S. A. Unuchek TI - Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation JO - Matematičeskie zametki PY - 2023 SP - 118 EP - 131 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/ LA - ru ID - MZM_2023_113_1_a9 ER -
S. A. Unuchek. Optimal Recovery Methods Exact on Trigonometric Polynomials for the Solution of the Heat Equation. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 118-131. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a9/