Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Sobolev space well-posedness of inverse problems of determining the heat transfer coefficient contained in a Robin-type boundary condition for the convection-diffusion equations. We prove an existence and uniqueness theorem for the solutions.
Keywords:
inverse problem, heat and mass transfer
Mots-clés : heat transfer coefficient, parabolic equation, diffusion.
Mots-clés : heat transfer coefficient, parabolic equation, diffusion.
@article{MZM_2023_113_1_a7,
author = {S. G. Pyatkov and V. A. Baranchuk},
title = {Determination of the {Heat} {Transfer} {Coefficient} in {Mathematical} {Models} of {Heat} and {Mass} {Transfer}},
journal = {Matemati\v{c}eskie zametki},
pages = {90--108},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/}
}
TY - JOUR AU - S. G. Pyatkov AU - V. A. Baranchuk TI - Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer JO - Matematičeskie zametki PY - 2023 SP - 90 EP - 108 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/ LA - ru ID - MZM_2023_113_1_a7 ER -
%0 Journal Article %A S. G. Pyatkov %A V. A. Baranchuk %T Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer %J Matematičeskie zametki %D 2023 %P 90-108 %V 113 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/ %G ru %F MZM_2023_113_1_a7
S. G. Pyatkov; V. A. Baranchuk. Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/