Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Sobolev space well-posedness of inverse problems of determining the heat transfer coefficient contained in a Robin-type boundary condition for the convection-diffusion equations. We prove an existence and uniqueness theorem for the solutions.
Keywords: inverse problem, heat and mass transfer
Mots-clés : heat transfer coefficient, parabolic equation, diffusion.
@article{MZM_2023_113_1_a7,
     author = {S. G. Pyatkov and V. A. Baranchuk},
     title = {Determination of the {Heat} {Transfer} {Coefficient} in {Mathematical} {Models} of {Heat} and {Mass} {Transfer}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {90--108},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. A. Baranchuk
TI  - Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
JO  - Matematičeskie zametki
PY  - 2023
SP  - 90
EP  - 108
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/
LA  - ru
ID  - MZM_2023_113_1_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. A. Baranchuk
%T Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
%J Matematičeskie zametki
%D 2023
%P 90-108
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/
%G ru
%F MZM_2023_113_1_a7
S. G. Pyatkov; V. A. Baranchuk. Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/