Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Sobolev space well-posedness of inverse problems of determining the heat transfer coefficient contained in a Robin-type boundary condition for the convection-diffusion equations. We prove an existence and uniqueness theorem for the solutions.
Keywords: inverse problem, heat and mass transfer
Mots-clés : heat transfer coefficient, parabolic equation, diffusion.
@article{MZM_2023_113_1_a7,
     author = {S. G. Pyatkov and V. A. Baranchuk},
     title = {Determination of the {Heat} {Transfer} {Coefficient} in {Mathematical} {Models} of {Heat} and {Mass} {Transfer}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {90--108},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - V. A. Baranchuk
TI  - Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
JO  - Matematičeskie zametki
PY  - 2023
SP  - 90
EP  - 108
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/
LA  - ru
ID  - MZM_2023_113_1_a7
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A V. A. Baranchuk
%T Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer
%J Matematičeskie zametki
%D 2023
%P 90-108
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/
%G ru
%F MZM_2023_113_1_a7
S. G. Pyatkov; V. A. Baranchuk. Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 90-108. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a7/

[1] O. M. Alifanov, Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K, M., 2009

[2] V. N. Tkachenko, Matematicheskoe modelirovanie, identifikatsiya i upravlenie tekhnologicheskimi protsessami teplovoi obrabotki materialov, Naukova dumka, Kiev, 2008 | MR

[3] M. V. Glagolev, A. F. Sabrekov, “Determination of gas exchange on the border between ecosystem and atmosphere: inverse modeling”, Mat. Biolog. Bioinform., 7:11 (2012), 81–101 | DOI

[4] A. I. Borodulin, B D. Desyatkov, G. A. Makhov, S. R. Sarmanaev, “Opredelenie emissii bolotnogo metana po izmerennym znacheniyam ego kontsentratsii v prizemnom sloe atmosfery”, Meteorologiya i gidrologiya, 1997, no. 1, 66–74

[5] L. V. Dantas, H. R. B. Orlande, R. M. Cotta, “An inverse problem of parameter estimation for heat and mass transfer in capillary porous media”, Int. J. Heat and Mass Transfer, 46:9 (2003), 1587–1599 | DOI

[6] J. Jr. Lugon, A. J. S. Neto, “An inverse problem of parameter estimation in simultaneous heat and mass transfer in a onedimensional porous medium”, Proceedings of COBEM 2003. 17-th International Congress on Mechanical Engineering, ABCM, San-Paolo, 2003; https://abcm.org.br/anais/cobem/2003/html/pdf/COB03-1158.pdf

[7] K. Cao, D. Lesnic, M. J. Colaco, “Determination of thermal conductivity of inhomogeneous orthotropic materials from temperature measurements”, Inverse Probl. Sci. Eng., 27:10 (2018), 1372–1398 | DOI | MR

[8] L. A. B. Varan, H. R. B. Orlande, F. L. V. Vianna, “Estimation of the convective heat transfer coefficient in pipelines with the Markov chain Monte-Carlo method”, Blucher Mech. Eng. Proc., 1:1 (2014), 1214–1225

[9] A. M. Osman, J. V. Beck, “Nonlinear Inverse Problem for the Estimation of Time-and-Space-Dependent Heat-Transfer Coefficients”, J. Thermophysics, 3:2 (2003), 146–152

[10] M. J. Colac, H. R. B. Orlande, “Inverse natural convection problem of simultaneous estimation of two boundary heat fluxes in irregular cavities”, Int. J. Heat and Mass Transfer, 47:6 (2004), 1201–1215 | DOI

[11] F. Avallone, C. S. Greco, D. Ekelschot, “2D Inverse Heat Transfer Measurements by IR Thermography in Hypersonic Flows”, Proceedings of the 11-th International Conference on Quantitative InfraRed Thermography, Naples, 2012, 1–13

[12] S. D. Farahani, F. Kowsary, M. Ashjaee, “Experimental estimation heat flux and heat transfer coefficient by using inverse methods”, Sci. Iranica B, 3:4 (2016), 1777–1786 | DOI

[13] J. Su, G. F. Hewitt, “Inverse heat conduction problem of estimating time-varying heat transfer coefficient”, Numer. Heat Transfer A, 45 (2004), 777–789 | DOI

[14] D. N. Hao, R. X. Thanh, D. Lesnic, “Determination of the heat transfer coefficients in transient heat conduction”, Inverse Problems, 29:9 (2013), 095020 | DOI | MR

[15] J. D. Lee, I. Tanabe, K. Takada, “Identification of the heat transfer coefficient on machine tool surface by inverse analysis”, JSME Int. J. Ser. C, 42:4 (1999), 1056–1060 | DOI

[16] T. M. Onyango, D. B. Ingham, D. Lesnic, “Restoring boundary conditions in heat conduction”, J. Eng. Math., 62:1 (2008), 85–101 | DOI | MR

[17] S. Wang, L. Zhang, X. Sun, H. Jial, “Solution to two-dimensional steady inverse heat transfer problems with interior heat source based on the conjugate gradient method”, Math. Probl. Eng., 2017 (2017), 2861342 | MR

[18] J. Sladek, V. Sladek, P. H. Wen, Y. C. Hon, “The Inverse problem of determining heat transfer coefficients by the meshless local Petrov–Galerkin method”, CMES Comput. Model. Eng. Sci., 48:2 (2009), 191–218 | MR

[19] B. Jin, X. Lu, “Numerical identification of a Robin coefficient in parabolic problems”, Math. Comp., 81:279 (2012), 1369–1398 | DOI | MR

[20] W. B. Da Silva, J. C. S. Dutra, C. E. P. Kopperschimidt, D. Lesnic, R. G. Aykroyd, “Sequential particle filter estimation of a time-dependent heat transfer coefficient in a multidimensional nonlinear inverse heat conduction problem”, Appl. Math. Model., 89:1 (2012), 654–668 | MR

[21] D. N. Hao, B. V. Huong, P. X. Thanh, D. Lesnic, “Identification of nonlinear heat transfer laws from boundary observations”, Appl. Anal., 94:9 (2015), 1784–1799 | DOI | MR

[22] M. Slodicka, R. Van Keer, “Determination of a Robin coefficient in semilinear parabolic problems by means of boundary measurements”, Inverse Problems, 18:1 (2002), 139–152 | DOI | MR

[23] A. Rösch, “Stability estimates for the identification of nonlinear heat transfer laws”, Inverse Problems, 12:5 (1996), 743–756 | DOI | MR

[24] D. Knupp, L. A S. Abreu, “Explicit boundary heat flux reconstruction employing temperature measurements regularized via truncated eigenfunction expansions”, Int. Commun. in Heat and Mass Transfer, 78 (2016), 241–252 | DOI

[25] S. A. Kolesnik, V. F. Formalev, E. L. Kuznetsova, “O granichnoi obratnoi zadache teploprovodnosti po vosstanovleniyu teplovykh potokov k granitsam anizotropnykh tel”, TVT, 53:1 (2015), 72–77 | DOI

[26] A. S. A. Alghamdi, “Inverse Estimation of Boundary Heat Flux for Heat Conduction Model”, JKAU. Eng. Sci., 21:1 (2010), 73–95 | DOI

[27] A. B. Kostin, A. I. Prilepko, “O nekotorykh zadachakh vosstanovleniya granichnogo usloviya dlya parabolicheskogo uravneniya. II”, Differents. uravneniya, 32:11 (1996), 1519–1528 | MR

[28] A. B. Kostin, A. I. Prilepko, “O nekotorykh zadachakh vosstanovleniya granichnogo usloviya dlya parabolicheskogo uravneniya. I”, Differents. uravneniya, 32:1 (1996), 107–116 | MR

[29] R. Denk, M. Huber, J. Prüss, “Optimal $L_p-L_q$-estimates for parabolic boundary value problems with inhomogeneous data”, Math. Z., 257 (2007), 193–224 | DOI | MR

[30] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[31] H. Amann, “Compact embeddings of vector-valued Sobolev and Besov spaces”, Glas. Mat. Ser. III, 35:1 (2000), 161–177 | MR

[32] O. A. Ladyzhenskaya, N. N. Uraltseva, V. A. Solonnikov, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[33] V. A. Belonogov, S. G. Pyatkov, “O razreshimosti zadach sopryazheniya s usloviyami tipa neidealnogo kontakta”, Izv. vuzov. Matem., 2020, no. 7, 18–32 | DOI

[34] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[35] M. A. Verzhbitskii, S. G. Pyatkov, “O nekotorykh obratnykh zadachakh ob opredelenii granichnykh rezhimov”, Matem. zametki SVFU, 23:2 (2016), 3–18

[36] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[37] P. Grisvard, “Equations differentielles abstraites”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2:3 (1969), 311–395 | MR