Short Complete Diagnostic Tests for Circuits Implementing Linear Boolean Functions
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 75-89
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that each of the Boolean functions $x_1\oplus\dots\oplus x_n$, $x_1\oplus\dots\oplus x_n\oplus 1$ can be implemented by a logic circuit in each of the bases $\{x\oplus y,1\}$, $\{x\\overline y,x\vee y,\overline x\}$, $\{x\,x\vee y,\overline x\}$, allowing a complete diagnostic test of length not exceeding $\lceil\log_2(n+1)\rceil$ (for the first two bases) or not exceeding $n$ (for the third basis) relative to one-type stuck-at faults at outputs of gates. We also establish that each of the functions $x_1\oplus\dots\oplus x_n$, $x_1\oplus\dots\oplus x_n\oplus 1$ can be implemented by a logic circuit in the basis $\{x\oplus y,1\}$ allowing a complete diagnostic test of length not exceeding $\lceil\log_2(n+1)\rceil+1$ relative to arbitrary stuck-at faults at outputs of gates.
Keywords:
logic circuit, complete diagnostic test, stuck-at fault, linear Boolean function.
@article{MZM_2023_113_1_a6,
author = {K. A. Popkov},
title = {Short {Complete} {Diagnostic} {Tests} for {Circuits} {Implementing} {Linear} {Boolean} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {75--89},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a6/}
}
K. A. Popkov. Short Complete Diagnostic Tests for Circuits Implementing Linear Boolean Functions. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a6/