Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2023_113_1_a14, author = {Yu. L. Sachkov and E. F. Sachkova}, title = {Sub-Lorentzian {Problem} on the {Heisenberg} {Group}}, journal = {Matemati\v{c}eskie zametki}, pages = {154--157}, publisher = {mathdoc}, volume = {113}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/} }
Yu. L. Sachkov; E. F. Sachkova. Sub-Lorentzian Problem on the Heisenberg Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 154-157. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/
[1] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, VINITI, M., 1987, 5–85 | MR | Zbl
[2] V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press, Cambridge, 1997 | MR
[3] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002 | MR
[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[5] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Univ. Press, Cambridge, 2019 | MR
[6] Yu. L. Sachkov, Vvedenie v geometricheskuyu teoriyu upravleniya, URSS, M., 2021
[7] M. Grochowski, “On the Heisenberg sub-Lorentzian metric on ${\mathbb R}^3$”, Geometric Singularity Theory, Banach Center Publ., 65, Warsaw, 2004, 57–65 | MR
[8] M. Grochowski, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR