Sub-Lorentzian Problem on the Heisenberg Group
Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 154-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: sub-Lorentzian geometry, Heisenberg group, optimal control, geometric control theory.
@article{MZM_2023_113_1_a14,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Sub-Lorentzian {Problem} on the {Heisenberg} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {154--157},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Sub-Lorentzian Problem on the Heisenberg Group
JO  - Matematičeskie zametki
PY  - 2023
SP  - 154
EP  - 157
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/
LA  - ru
ID  - MZM_2023_113_1_a14
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Sub-Lorentzian Problem on the Heisenberg Group
%J Matematičeskie zametki
%D 2023
%P 154-157
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/
%G ru
%F MZM_2023_113_1_a14
Yu. L. Sachkov; E. F. Sachkova. Sub-Lorentzian Problem on the Heisenberg Group. Matematičeskie zametki, Tome 113 (2023) no. 1, pp. 154-157. http://geodesic.mathdoc.fr/item/MZM_2023_113_1_a14/

[1] A. M. Vershik, V. Ya. Gershkovich, “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, VINITI, M., 1987, 5–85 | MR | Zbl

[2] V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press, Cambridge, 1997 | MR

[3] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002 | MR

[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[5] A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Univ. Press, Cambridge, 2019 | MR

[6] Yu. L. Sachkov, Vvedenie v geometricheskuyu teoriyu upravleniya, URSS, M., 2021

[7] M. Grochowski, “On the Heisenberg sub-Lorentzian metric on ${\mathbb R}^3$”, Geometric Singularity Theory, Banach Center Publ., 65, Warsaw, 2004, 57–65 | MR

[8] M. Grochowski, J. Dyn. Control Syst., 12:2 (2006), 145–160 | DOI | MR